GeoPoint improvements, closes #201

This commit is contained in:
Emux 2016-10-08 16:17:10 +03:00
parent ac7706eb7a
commit 8a27d14f9a
4 changed files with 191 additions and 80 deletions

View File

@ -17,9 +17,10 @@
- libGDX layer gestures [#151](https://github.com/mapsforge/vtm/issues/151)
- Render theme area tessellation option [#37](https://github.com/mapsforge/vtm/issues/37)
- Graphics API platform enhancements [#92](https://github.com/mapsforge/vtm/issues/92)
- GeoPoint & BoundingBox improvements [#201](https://github.com/mapsforge/vtm/issues/201) [#200](https://github.com/mapsforge/vtm/issues/200)
- vtm-jts module [#53](https://github.com/mapsforge/vtm/issues/53)
- vtm-http module [#140](https://github.com/mapsforge/vtm/issues/140)
- Internal render themes various enhancements [#41](https://github.com/mapsforge/vtm/issues/41)
- Internal render themes various improvements [#41](https://github.com/mapsforge/vtm/issues/41)
- LWJGL desktop libGDX backend [#129](https://github.com/mapsforge/vtm/issues/129)
- SNAPSHOT builds publish to Sonatype OSSRH [#165](https://github.com/mapsforge/vtm/issues/165)
- Many other minor improvements and bug fixes

View File

@ -117,7 +117,7 @@ public class PathLayer extends VectorLayer {
synchronized (mPoints) {
/* get the great circle path length in meters */
double length = startPoint.distanceTo(endPoint);
double length = startPoint.sphericalDistance(endPoint);
/* add one point for every 100kms of the great circle path */
int numberOfPoints = (int) (length / 100000);

View File

@ -2,6 +2,7 @@
* Copyright 2010, 2011, 2012 mapsforge.org
* Copyright 2012 Hannes Janetzek
* Copyright 2016 Andrey Novikov
* Copyright 2016 devemux86
*
* This file is part of the OpenScienceMap project (http://www.opensciencemap.org).
*
@ -30,6 +31,27 @@ public class GeoPoint implements Comparable<GeoPoint> {
*/
private static final double CONVERSION_FACTOR = 1000000d;
/**
* The equatorial radius as defined by the <a href="http://en.wikipedia.org/wiki/World_Geodetic_System">WGS84
* ellipsoid</a>. WGS84 is the reference coordinate system used by the Global Positioning System.
*/
private static final double EQUATORIAL_RADIUS = 6378137.0;
/**
* The flattening factor of the earth's ellipsoid is required for distance computation.
*/
private static final double INVERSE_FLATTENING = 298.257223563;
/**
* Polar radius of earth is required for distance computation.
*/
private static final double POLAR_RADIUS = 6356752.3142;
/**
* The hash code of this object.
*/
private int hashCodeValue = 0;
/**
* The latitude value of this GeoPoint in microdegrees (degrees * 10^6).
*/
@ -40,11 +62,6 @@ public class GeoPoint implements Comparable<GeoPoint> {
*/
public final int longitudeE6;
/**
* The hash code of this object.
*/
private int hashCodeValue = 0;
/**
* @param lat the latitude in degrees, will be limited to the possible
* latitude range.
@ -52,13 +69,9 @@ public class GeoPoint implements Comparable<GeoPoint> {
* longitude range.
*/
public GeoPoint(double lat, double lon) {
lat = FastMath.clamp(lat,
MercatorProjection.LATITUDE_MIN,
MercatorProjection.LATITUDE_MAX);
lat = FastMath.clamp(lat, MercatorProjection.LATITUDE_MIN, MercatorProjection.LATITUDE_MAX);
this.latitudeE6 = (int) (lat * CONVERSION_FACTOR);
lon = FastMath.clamp(lon,
MercatorProjection.LONGITUDE_MIN,
MercatorProjection.LONGITUDE_MAX);
lon = FastMath.clamp(lon, MercatorProjection.LONGITUDE_MIN, MercatorProjection.LONGITUDE_MAX);
this.longitudeE6 = (int) (lon * CONVERSION_FACTOR);
}
@ -72,9 +85,26 @@ public class GeoPoint implements Comparable<GeoPoint> {
this(latitudeE6 / CONVERSION_FACTOR, longitudeE6 / CONVERSION_FACTOR);
}
public void project(Point out) {
out.x = MercatorProjection.longitudeToX(this.longitudeE6 / CONVERSION_FACTOR);
out.y = MercatorProjection.latitudeToY(this.latitudeE6 / CONVERSION_FACTOR);
public double bearingTo(GeoPoint other) {
double deltaLon = Math.toRadians(other.getLongitude() - getLongitude());
double a1 = Math.toRadians(getLatitude());
double b1 = Math.toRadians(other.getLatitude());
double y = Math.sin(deltaLon) * Math.cos(b1);
double x = Math.cos(a1) * Math.sin(b1) - Math.sin(a1) * Math.cos(b1) * Math.cos(deltaLon);
double result = Math.toDegrees(Math.atan2(y, x));
return (result + 360.0) % 360.0;
}
/**
* @return the hash code of this object.
*/
private int calculateHashCode() {
int result = 7;
result = 31 * result + this.latitudeE6;
result = 31 * result + this.longitudeE6;
return result;
}
@Override
@ -91,6 +121,40 @@ public class GeoPoint implements Comparable<GeoPoint> {
return 0;
}
/**
* Returns the destination point from this point having travelled the given distance on the
* given initial bearing (bearing normally varies around path followed).
*
* @param distance the distance travelled, in same units as earth radius (default: meters)
* @param bearing the initial bearing in degrees from north
* @return the destination point
* @see <a href="http://www.movable-type.co.uk/scripts/latlon.js">latlon.js</a>
*/
public GeoPoint destinationPoint(final double distance, final float bearing) {
double theta = Math.toRadians(bearing);
double delta = distance / EQUATORIAL_RADIUS; // angular distance in radians
double phi1 = Math.toRadians(getLatitude());
double lambda1 = Math.toRadians(getLongitude());
double phi2 = Math.asin(Math.sin(phi1) * Math.cos(delta)
+ Math.cos(phi1) * Math.sin(delta) * Math.cos(theta));
double lambda2 = lambda1 + Math.atan2(Math.sin(theta) * Math.sin(delta) * Math.cos(phi1),
Math.cos(delta) - Math.sin(phi1) * Math.sin(phi2));
return new GeoPoint(Math.toDegrees(phi2), Math.toDegrees(lambda2));
}
/**
* Calculate the Euclidean distance from this point to another using the Pythagorean theorem.
*
* @param other The point to calculate the distance to
* @return the distance in degrees as a double
*/
public double distance(GeoPoint other) {
return Math.hypot(getLongitude() - other.getLongitude(), getLatitude() - other.getLatitude());
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
@ -129,6 +193,51 @@ public class GeoPoint implements Comparable<GeoPoint> {
return this.hashCodeValue;
}
/**
* Calculates the amount of degrees of latitude for a given distance in meters.
*
* @param meters distance in meters
* @return latitude degrees
*/
public static double latitudeDistance(int meters) {
return (meters * 360) / (2 * Math.PI * EQUATORIAL_RADIUS);
}
/**
* Calculates the amount of degrees of longitude for a given distance in meters.
*
* @param meters distance in meters
* @param latitude the latitude at which the calculation should be performed
* @return longitude degrees
*/
public static double longitudeDistance(int meters, double latitude) {
return (meters * 360) / (2 * Math.PI * EQUATORIAL_RADIUS * Math.cos(Math.toRadians(latitude)));
}
public void project(Point out) {
out.x = MercatorProjection.longitudeToX(this.longitudeE6 / CONVERSION_FACTOR);
out.y = MercatorProjection.latitudeToY(this.latitudeE6 / CONVERSION_FACTOR);
}
/**
* Calculate the spherical distance from this point to another using the Haversine formula.
* <p/>
* This calculation is done using the assumption, that the earth is a sphere, it is not
* though. If you need a higher precision and can afford a longer execution time you might
* want to use vincentyDistance.
*
* @param other The point to calculate the distance to
* @return the distance in meters as a double
*/
public double sphericalDistance(GeoPoint other) {
double dLat = Math.toRadians(other.getLatitude() - getLatitude());
double dLon = Math.toRadians(other.getLongitude() - getLongitude());
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(Math.toRadians(getLatitude()))
* Math.cos(Math.toRadians(other.getLatitude())) * Math.sin(dLon / 2) * Math.sin(dLon / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return c * EQUATORIAL_RADIUS;
}
@Override
public String toString() {
return new StringBuilder()
@ -141,74 +250,75 @@ public class GeoPoint implements Comparable<GeoPoint> {
}
/**
* @return the hash code of this object.
* Calculate the spherical distance from this point to another using Vincenty inverse formula
* for ellipsoids. This is very accurate but consumes more resources and time than the
* sphericalDistance method.
* <p/>
* Adaptation of Chriss Veness' JavaScript Code on
* http://www.movable-type.co.uk/scripts/latlong-vincenty.html
* <p/>
* Paper: Vincenty inverse formula - T Vincenty, "Direct and Inverse Solutions of Geodesics
* on the Ellipsoid with application of nested equations", Survey Review, vol XXII no 176,
* 1975 (http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf)
*
* @param other The point to calculate the distance to
* @return the distance in meters as a double
*/
private int calculateHashCode() {
int result = 7;
result = 31 * result + this.latitudeE6;
result = 31 * result + this.longitudeE6;
return result;
}
public double vincentyDistance(GeoPoint other) {
double f = 1 / INVERSE_FLATTENING;
double L = Math.toRadians(other.getLongitude() - getLongitude());
double U1 = Math.atan((1 - f) * Math.tan(Math.toRadians(getLatitude())));
double U2 = Math.atan((1 - f) * Math.tan(Math.toRadians(other.getLatitude())));
double sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
double sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
// ===========================================================
// Methods from osmdroid
// Copyright 2012 osmdroid authors: Nicolas Gramlich,
// Theodore Hong
// ===========================================================
double lambda = L, lambdaP, iterLimit = 100;
public static final float DEG2RAD = (float) (Math.PI / 180.0);
public static final float RAD2DEG = (float) (180.0 / Math.PI);
// http://en.wikipedia.org/wiki/Earth_radius#Equatorial_radius
public static final int RADIUS_EARTH_METERS = 6378137;
double cosSqAlpha = 0, sinSigma = 0, cosSigma = 0, cos2SigmaM = 0, sigma = 0, sinLambda = 0, sinAlpha = 0, cosLambda = 0;
do {
sinLambda = Math.sin(lambda);
cosLambda = Math.cos(lambda);
sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda)
+ (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda)
* (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0)
return 0; // co-incident points
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1 - sinAlpha * sinAlpha;
if (cosSqAlpha != 0) {
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
} else {
cos2SigmaM = 0;
}
double C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = L
+ (1 - C)
* f
* sinAlpha
* (sigma + C * sinSigma
* (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);
/**
* @param other ...
* @return distance in meters
* @see "http://www.geocities.com/DrChengalva/GPSDistance.html"
*/
public double distanceTo(GeoPoint other) {
return distance(latitudeE6 / 1E6,
longitudeE6 / 1E6,
other.latitudeE6 / 1E6,
other.longitudeE6 / 1E6);
}
if (iterLimit == 0)
return 0; // formula failed to converge
public static double distance(double lat1, double lon1, double lat2, double lon2) {
double uSq = cosSqAlpha
* (Math.pow(EQUATORIAL_RADIUS, 2) - Math.pow(POLAR_RADIUS, 2))
/ Math.pow(POLAR_RADIUS, 2);
double A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
double B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
double deltaSigma = B
* sinSigma
* (cos2SigmaM + B
/ 4
* (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM
* (-3 + 4 * sinSigma * sinSigma)
* (-3 + 4 * cos2SigmaM * cos2SigmaM)));
double s = POLAR_RADIUS * A * (sigma - deltaSigma);
double a1 = DEG2RAD * lat1;
double a2 = DEG2RAD * lon1;
double b1 = DEG2RAD * lat2;
double b2 = DEG2RAD * lon2;
double cosa1 = Math.cos(a1);
double cosb1 = Math.cos(b1);
double t1 = cosa1 * Math.cos(a2) * cosb1 * Math.cos(b2);
double t2 = cosa1 * Math.sin(a2) * cosb1 * Math.sin(b2);
double t3 = Math.sin(a1) * Math.sin(b1);
double tt = Math.acos(t1 + t2 + t3);
return (RADIUS_EARTH_METERS * tt);
}
public double bearingTo(GeoPoint other) {
return bearing(latitudeE6 / 1E6,
longitudeE6 / 1E6,
other.latitudeE6 / 1E6,
other.longitudeE6 / 1E6);
}
public static double bearing(double lat1, double lon1, double lat2, double lon2) {
double deltaLon = DEG2RAD * (lon2 - lon1);
double a1 = DEG2RAD * lat1;
double b1 = DEG2RAD * lat2;
double y = Math.sin(deltaLon) * Math.cos(b1);
double x = Math.cos(a1) * Math.sin(b1) - Math.sin(a1) * Math.cos(b1) * Math.cos(deltaLon);
double result = RAD2DEG * Math.atan2(y, x);
return (result + 360.0) % 360.0;
return s;
}
}

View File

@ -139,7 +139,7 @@ public class PathLayer extends Layer {
synchronized (mPoints) {
/* get the great circle path length in meters */
double length = startPoint.distanceTo(endPoint);
double length = startPoint.sphericalDistance(endPoint);
/* add one point for every 100kms of the great circle path */
int numberOfPoints = (int) (length / 100000);