diff --git a/vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/geom/Triangulator.java b/vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/Tessellator.java
similarity index 97%
rename from vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/geom/Triangulator.java
rename to vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/Tessellator.java
index 27380e7d..3174cab4 100644
--- a/vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/geom/Triangulator.java
+++ b/vtm-gdx-html/src/org/oscim/gdx/emu/org/oscim/utils/Tessellator.java
@@ -1,4 +1,4 @@
-package org.oscim.utils.geom;
+package org.oscim.utils;
import org.oscim.backend.Log;
import org.oscim.renderer.elements.VertexItem;
@@ -9,7 +9,7 @@ import com.google.gwt.core.client.JsArrayNumber;
import com.google.gwt.core.client.JsArrayUtils;
import com.google.gwt.typedarrays.shared.Int32Array;
-public class Triangulator {
+public class Tessellator {
public static synchronized int triangulate(float[] points, int ppos, int plen, short[] index,
int ipos, int rings, int vertexOffset, VertexItem outTris) {
diff --git a/vtm/jni/builder/JniBuilder.java b/vtm/jni/builder/JniBuilder.java
index fb938517..55d957b8 100644
--- a/vtm/jni/builder/JniBuilder.java
+++ b/vtm/jni/builder/JniBuilder.java
@@ -1,5 +1,4 @@
-
import com.badlogic.gdx.jnigen.AntScriptGenerator;
import com.badlogic.gdx.jnigen.BuildConfig;
import com.badlogic.gdx.jnigen.BuildTarget;
@@ -9,30 +8,28 @@ public class JniBuilder {
public static void main(String[] args) {
String[] headers = { "." };
String[] sources = {
- // Matrix stuff
- "gl/utils.c",
- // Triangle
- "triangle/TriangleJni.c",
- "triangle/triangle.c",
- "triangle/triangle_dbg.c",
- // libtessellate
- "tessellate/dict.c",
- "tessellate/mesh.c",
- "tessellate/render.c",
- "tessellate/tess.c",
- "tessellate/geom.c",
- "tessellate/memalloc.c",
- "tessellate/normal.c",
- "tessellate/priorityq.c",
- "tessellate/sweep.c",
- "tessellate/tessmono.c",
- "tessellate/tessellate.c"
- };
+ // Matrix stuff
+ "gl/utils.c",
- String cflags = " -Wall -std=c99 -O2 -ffast-math -DTRILIBRARY -DREDUCED -DCDT_ONLY -DNO_TIMER";
+ // libtessellate
+ "tessellate/dict.c",
+ "tessellate/mesh.c",
+ "tessellate/render.c",
+ "tessellate/tess.c",
+ "tessellate/geom.c",
+ "tessellate/memalloc.c",
+ "tessellate/normal.c",
+ "tessellate/priorityq.c",
+ "tessellate/sweep.c",
+ "tessellate/tessmono.c",
+ "tessellate/tessellate.c",
+ "tessellate/TessellateJni.c"
+ };
+
+ String cflags = " -Wall -std=c99 -O2 -ffast-math";
BuildTarget win32home = BuildTarget.newDefaultTarget(TargetOs.Windows,
- false);
+ false);
win32home.compilerPrefix = "";
win32home.buildFileName = "build-windows32home.xml";
win32home.excludeFromMasterBuildFile = true;
@@ -42,14 +39,14 @@ public class JniBuilder {
win32home.cppFlags += cflags;
BuildTarget win32 = BuildTarget.newDefaultTarget(TargetOs.Windows,
- false);
+ false);
win32.headerDirs = headers;
win32.cIncludes = sources;
win32.cFlags += cflags;
win32.cppFlags += cflags;
BuildTarget win64 = BuildTarget
- .newDefaultTarget(TargetOs.Windows, true);
+ .newDefaultTarget(TargetOs.Windows, true);
win64.headerDirs = headers;
win64.cIncludes = sources;
win64.cFlags += cflags;
@@ -76,7 +73,7 @@ public class JniBuilder {
// mac.linkerFlags += " -framework CoreServices -framework Carbon";
BuildTarget android = BuildTarget.newDefaultTarget(TargetOs.Android,
- false);
+ false);
android.headerDirs = headers;
android.cIncludes = sources;
android.cFlags += cflags;
@@ -90,15 +87,11 @@ public class JniBuilder {
//new NativeCodeGenerator().generate();
new AntScriptGenerator().generate(new BuildConfig("vtm-jni"),
- //win32home, win32, win64, lin32,
- lin64, android);
-
-// BuildExecutor.executeAnt("jni/build-windows32home.xml", "-v clean");
-// BuildExecutor.executeAnt("jni/build-windows32home.xml", "-v");
-// BuildExecutor.executeAnt("jni/build.xml", "pack-natives -v");
-
-
-
+ //win32home, win32, win64, lin32,
+ lin64, android);
+ // BuildExecutor.executeAnt("jni/build-windows32home.xml", "-v clean");
+ // BuildExecutor.executeAnt("jni/build-windows32home.xml", "-v");
+ // BuildExecutor.executeAnt("jni/build.xml", "pack-natives -v");
}
}
diff --git a/vtm/jni/tessellate/Makefile b/vtm/jni/tessellate/Makefile
index 607753f6..5d42194e 100644
--- a/vtm/jni/tessellate/Makefile
+++ b/vtm/jni/tessellate/Makefile
@@ -1,2 +1,2 @@
all:
- gcc dict.c mesh.c render.c tess.c geom.c memalloc.c normal.c priorityq.c sweep.c tessmono.c tessellate.c main.c -o tessellate
+ gcc -g -DTEST dict.c mesh.c render.c tess.c geom.c memalloc.c normal.c priorityq.c sweep.c tessmono.c tessellate.c main.c -o tessellate
diff --git a/vtm/jni/tessellate/TessellateJni.c b/vtm/jni/tessellate/TessellateJni.c
new file mode 100644
index 00000000..bfa0a776
--- /dev/null
+++ b/vtm/jni/tessellate/TessellateJni.c
@@ -0,0 +1,225 @@
+#include "tessellate.h"
+#include
+#include
+#include
+
+#ifdef __ANDROID__
+#include
+
+#define printf(...) __android_log_print(ANDROID_LOG_DEBUG, "Tesselate", __VA_ARGS__)
+#endif
+
+#define CAST_CTX(x) (TessContext *)(uintptr_t) x
+
+void Java_org_oscim_utils_Tessellator_tessFinish(JNIEnv *env, jclass c, jlong ptr_context) {
+
+ TessContext *ctx = CAST_CTX(ptr_context);
+
+ while (ctx->latest_v) {
+ Vertex *prev = ctx->latest_v->prev;
+ free(ctx->latest_v);
+ ctx->latest_v = prev;
+ }
+
+ while (ctx->latest_t) {
+ Triangle *prev = ctx->latest_t->prev;
+ free(ctx->latest_t);
+ ctx->latest_t = prev;
+ }
+
+ //destroy_tess_context(ctx);
+ free(ctx);
+}
+
+jint Java_org_oscim_utils_Tessellator_tessGetCoordinates(JNIEnv *env, jclass c,
+ jlong ptr_context, jshortArray obj_coords, jfloat scale) {
+
+ TessContext *ctx = CAST_CTX(ptr_context);
+
+ int length = (*env)->GetArrayLength(env, obj_coords);
+
+ jshort* coords = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_coords, 0);
+ if (coords == NULL) {
+ return 0;
+ }
+
+ //int n_verts = 1 + ctx->latest_v->index;
+ //int n_tris_copy = ctx->n_tris;
+
+ int cnt = 0;
+ for (; ctx->latest_v && cnt < length; cnt += 2) {
+ coords[cnt + 0] = (ctx->latest_v->pt[0] * scale) + 0.5f;
+ coords[cnt + 1] = (ctx->latest_v->pt[1] * scale) + 0.5f;
+ Vertex *prev = ctx->latest_v->prev;
+ free(ctx->latest_v);
+ ctx->latest_v = prev;
+ }
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_coords, coords, JNI_ABORT);
+
+ return cnt;
+}
+
+jint Java_org_oscim_utils_Tessellator_tessGetCoordinatesD(JNIEnv *env, jclass c,
+ jlong ptr_context, jdoubleArray obj_coords) {
+
+ TessContext *ctx = CAST_CTX(ptr_context);
+
+ int length = (*env)->GetArrayLength(env, obj_coords);
+
+ jdouble* coords = (jdouble*) (*env)->GetPrimitiveArrayCritical(env, obj_coords, 0);
+ if (coords == NULL) {
+ return 0;
+ }
+
+ //int n_verts = 1 + ctx->latest_v->index;
+ //int n_tris_copy = ctx->n_tris;
+
+ int cnt = 0;
+ for (; ctx->latest_v && cnt < length; cnt += 2) {
+ coords[cnt + 0] = ctx->latest_v->pt[0];
+ coords[cnt + 1] = ctx->latest_v->pt[1];
+ Vertex *prev = ctx->latest_v->prev;
+ free(ctx->latest_v);
+ ctx->latest_v = prev;
+ }
+
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_coords, coords, JNI_ABORT);
+
+ return cnt;
+}
+
+jint Java_org_oscim_utils_Tessellator_tessGetIndices(JNIEnv *env, jclass c,
+ jlong ptr_context, jshortArray obj_indices) {
+
+ TessContext *ctx = CAST_CTX(ptr_context);
+
+ int length = (*env)->GetArrayLength(env, obj_indices);
+
+ jshort* tris = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_indices, 0);
+ if (tris == NULL) {
+ return 0;
+ }
+
+ int n_tris_copy = ctx->n_tris;
+
+ int cnt = 0;
+
+ for (; ctx->latest_t && cnt < length; cnt += 3) {
+ tris[cnt + 0] = ctx->latest_t->v[0];
+ tris[cnt + 1] = ctx->latest_t->v[1];
+ tris[cnt + 2] = ctx->latest_t->v[2];
+ Triangle *prev = ctx->latest_t->prev;
+
+ free(ctx->latest_t);
+ ctx->latest_t = prev;
+ n_tris_copy--;
+ }
+
+ ctx->n_tris = n_tris_copy;
+
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_indices, tris, JNI_ABORT);
+
+ return cnt;
+}
+
+jlong Java_org_oscim_utils_Tessellator_tessellate(JNIEnv *env, jclass c,
+ jfloatArray obj_points, jint pos,
+ jshortArray obj_index, jint ipos,
+ jint num_rings, jintArray obj_out) {
+
+ //printf("add %d %d %d\n", pos, ipos, num_rings);
+ jboolean isCopy;
+
+ float* orig_points = (float*) (*env)->GetPrimitiveArrayCritical(env, obj_points, &isCopy);
+ if (orig_points == NULL)
+ return 0;
+
+ const float *points = orig_points + pos;
+
+ jshort* orig_indices = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_index, &isCopy);
+ if (orig_indices == NULL) {
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
+ return 0;
+ }
+
+ jshort* indices = orig_indices + ipos;
+
+ const float **rings = malloc(sizeof(float*) * (num_rings + 1));
+ int offset = 0;
+ for (int i = 0; i < num_rings; i++) {
+ rings[i] = points + offset;
+ offset += indices[i];
+ }
+
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_index, orig_indices, JNI_ABORT);
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
+
+ rings[num_rings] = points + offset;
+
+ int nverts, ntris;
+
+ TessContext *ctx = tessellate(NULL, &nverts, NULL, &ntris,
+ rings, rings + (num_rings + 1));
+
+ free(rings);
+
+ nverts = 1 + ctx->latest_v->index;
+ ntris = ctx->n_tris;
+
+
+ jint* out = (jint*) (*env)->GetPrimitiveArrayCritical(env, obj_out, &isCopy);
+ if (out == NULL) {
+ return 0;
+ }
+
+ out[0] = nverts;
+ out[1] = ntris;
+
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_out, out, JNI_ABORT);
+
+ return (long) ctx;
+}
+
+jlong Java_org_oscim_renderer_sublayers_MeshLayer_tessellateD(JNIEnv *env, jclass c,
+ jdoubleArray obj_points, jint pos,
+ jshortArray obj_index, jint ipos,
+ jint num_rings) { //, jintArray obj_out) {
+
+ jboolean isCopy;
+
+ //printf("add %d %d %d\n", pos, ipos, num_rings);
+
+ double* orig_points = (double*) (*env)->GetPrimitiveArrayCritical(env, obj_points, &isCopy);
+ if (orig_points == NULL)
+ return 0;
+
+ const double *points = orig_points + pos;
+
+ jshort* orig_indices = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_index, &isCopy);
+ if (orig_indices == NULL) {
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
+ return 0;
+ }
+
+ jshort* indices = orig_indices + ipos;
+
+ const double **rings = malloc(sizeof(double*) * (num_rings + 1));
+ int offset = 0;
+ for (int i = 0; i < num_rings; i++) {
+ rings[i] = points + offset;
+ offset += indices[i];
+ }
+ rings[num_rings] = points + offset;
+
+ int nverts, ntris;
+
+ TessContext *ctx = tessellateD(NULL, &nverts, NULL, &ntris,
+ rings, rings + (num_rings + 1));
+
+ free(rings);
+
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_index, orig_indices, JNI_ABORT);
+ (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
+
+ return (long) ctx;
+}
diff --git a/vtm/jni/tessellate/main.c b/vtm/jni/tessellate/main.c
index 0ef62e2d..092b1a67 100644
--- a/vtm/jni/tessellate/main.c
+++ b/vtm/jni/tessellate/main.c
@@ -7,22 +7,25 @@ void run_example(const double vertices_array[],
int contours_size)
{
double *coordinates_out;
+
int *tris_out;
int nverts, ntris, i;
const double *p = vertices_array;
- /* const double **contours = contours_array; */
+ //const double **contours = contours_array;
- tessellate(&coordinates_out, &nverts,
+ tessellateD(&coordinates_out, &nverts,
&tris_out, &ntris,
contours_array, contours_array + contours_size);
- for (i=0; i<2 * nverts; ++i) {
- fprintf(stdout, "%g ", coordinates_out[i]);
+
+ for (i=0; i< nverts; i += 1) {
+ fprintf(stdout, "%g %g, ", coordinates_out[i*2], coordinates_out[i*2+1]);
}
+
fprintf(stdout, "\n");
- for (i=0; i<3 * ntris; ++i) {
- fprintf(stdout, "%d ", tris_out[i]);
+ for (i=0; i< ntris; i += 1) {
+ fprintf(stdout, "%d %d %d\n", tris_out[i*3], tris_out[i*3+1], tris_out[i*3+2]);
}
fprintf(stdout, "\n");
free(coordinates_out);
@@ -30,15 +33,23 @@ void run_example(const double vertices_array[],
free(tris_out);
}
-int main()
-{
- double a1[] = { 0, 0, 1, 5, 2, 0, -1, 3, 3, 3 };
- const double *c1[] = {a1, a1+10};
- int s1 = 2;
+int main() {
+ double a1[] = {
+ 0, 0,
+ 1, 0,
+ 1, 1,
+ 0, 1,
+ };
+
+ const double *c1[] = {a1, a1 + 8};
+
run_example(a1, c1, 2);
+
printf("\n");
double a2[] = { 0, 0, 3, 0, 3, 3, 0, 3,
1, 1, 2, 1, 2, 2, 1, 2 };
+
+
const double *c2[] = {a2, a2+8, a2+16};
int s2 = 3;
run_example(a2, c2, s2);
diff --git a/vtm/jni/tessellate/normal.c b/vtm/jni/tessellate/normal.c
index 9a3bd43d..352bb95f 100644
--- a/vtm/jni/tessellate/normal.c
+++ b/vtm/jni/tessellate/normal.c
@@ -28,9 +28,9 @@
* Silicon Graphics, Inc.
*/
/*
-** Author: Eric Veach, July 1994.
-**
-*/
+ ** Author: Eric Veach, July 1994.
+ **
+ */
#include "gluos.h"
#include "mesh.h"
@@ -38,6 +38,7 @@
#include "normal.h"
#include
#include
+#include
#ifndef TRUE
#define TRUE 1
@@ -51,121 +52,139 @@
#if 0
static void Normalize( GLdouble v[3] )
{
- GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
+ GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
- assert( len > 0 );
- len = sqrt( len );
- v[0] /= len;
- v[1] /= len;
- v[2] /= len;
+ assert( len > 0 );
+ len = sqrt( len );
+ v[0] /= len;
+ v[1] /= len;
+ v[2] /= len;
}
#endif
#undef ABS
#define ABS(x) ((x) < 0 ? -(x) : (x))
-static int LongAxis( GLdouble v[3] )
+static int LongAxis(GLdouble v[3])
{
- int i = 0;
+ int i = 0;
- if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
- if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
- return i;
+ if (ABS(v[1]) > ABS(v[0])) {
+ i = 1;
+ }
+ if (ABS(v[2]) > ABS(v[i])) {
+ i = 2;
+ }
+ return i;
}
-static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
+static void ComputeNormal(GLUtesselator *tess, GLdouble norm[3])
{
- GLUvertex *v, *v1, *v2;
- GLdouble c, tLen2, maxLen2;
- GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
- GLUvertex *maxVert[3], *minVert[3];
- GLUvertex *vHead = &tess->mesh->vHead;
- int i;
+ GLUvertex *v, *v1, *v2;
+ GLdouble c, tLen2, maxLen2;
+ GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
+ GLUvertex *maxVert[3], *minVert[3];
+ GLUvertex *vHead = &tess->mesh->vHead;
+ int i;
- maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
- minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
+ maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
+ minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
- for( v = vHead->next; v != vHead; v = v->next ) {
- for( i = 0; i < 3; ++i ) {
- c = v->coords[i];
- if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
- if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
- }
- }
+ for (v = vHead->next; v != vHead; v = v->next) {
+ for (i = 0; i < 3; ++i) {
+ c = v->coords[i];
+ if (c < minVal[i]) {
+ minVal[i] = c;
+ minVert[i] = v;
+ }
+ if (c > maxVal[i]) {
+ maxVal[i] = c;
+ maxVert[i] = v;
+ }
+ }
+ }
- /* Find two vertices separated by at least 1/sqrt(3) of the maximum
- * distance between any two vertices
- */
- i = 0;
- if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
- if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
- if( minVal[i] >= maxVal[i] ) {
- /* All vertices are the same -- normal doesn't matter */
- norm[0] = 0; norm[1] = 0; norm[2] = 1;
- return;
- }
+ /* Find two vertices separated by at least 1/sqrt(3) of the maximum
+ * distance between any two vertices
+ */
+ i = 0;
+ if (maxVal[1] - minVal[1] > maxVal[0] - minVal[0]) {
+ i = 1;
+ }
+ if (maxVal[2] - minVal[2] > maxVal[i] - minVal[i]) {
+ i = 2;
+ }
+ if (minVal[i] >= maxVal[i]) {
+ /* All vertices are the same -- normal doesn't matter */
+ norm[0] = 0;
+ norm[1] = 0;
+ norm[2] = 1;
+ return;
+ }
- /* Look for a third vertex which forms the triangle with maximum area
- * (Length of normal == twice the triangle area)
- */
- maxLen2 = 0;
- v1 = minVert[i];
- v2 = maxVert[i];
- d1[0] = v1->coords[0] - v2->coords[0];
- d1[1] = v1->coords[1] - v2->coords[1];
- d1[2] = v1->coords[2] - v2->coords[2];
- for( v = vHead->next; v != vHead; v = v->next ) {
- d2[0] = v->coords[0] - v2->coords[0];
- d2[1] = v->coords[1] - v2->coords[1];
- d2[2] = v->coords[2] - v2->coords[2];
- tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
- tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
- tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
- tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
- if( tLen2 > maxLen2 ) {
- maxLen2 = tLen2;
- norm[0] = tNorm[0];
- norm[1] = tNorm[1];
- norm[2] = tNorm[2];
- }
- }
+ /* Look for a third vertex which forms the triangle with maximum area
+ * (Length of normal == twice the triangle area)
+ */
+ maxLen2 = 0;
+ v1 = minVert[i];
+ v2 = maxVert[i];
+ d1[0] = v1->coords[0] - v2->coords[0];
+ d1[1] = v1->coords[1] - v2->coords[1];
+ d1[2] = v1->coords[2] - v2->coords[2];
+ for (v = vHead->next; v != vHead; v = v->next) {
+ d2[0] = v->coords[0] - v2->coords[0];
+ d2[1] = v->coords[1] - v2->coords[1];
+ d2[2] = v->coords[2] - v2->coords[2];
+ tNorm[0] = d1[1] * d2[2] - d1[2] * d2[1];
+ tNorm[1] = d1[2] * d2[0] - d1[0] * d2[2];
+ tNorm[2] = d1[0] * d2[1] - d1[1] * d2[0];
+ tLen2 = tNorm[0] * tNorm[0] + tNorm[1] * tNorm[1] + tNorm[2] * tNorm[2];
+ if (tLen2 > maxLen2) {
+ maxLen2 = tLen2;
+ norm[0] = tNorm[0];
+ norm[1] = tNorm[1];
+ norm[2] = tNorm[2];
+ }
+ }
- if( maxLen2 <= 0 ) {
- /* All points lie on a single line -- any decent normal will do */
- norm[0] = norm[1] = norm[2] = 0;
- norm[LongAxis(d1)] = 1;
- }
+ if (maxLen2 <= 0) {
+ /* All points lie on a single line -- any decent normal will do */
+ norm[0] = norm[1] = norm[2] = 0;
+ norm[LongAxis(d1)] = 1;
+ }
+
+ //printf("compute normal %f %f %f\n", norm[0], norm[1], norm[2]);
}
-
-static void CheckOrientation( GLUtesselator *tess )
+static void CheckOrientation(GLUtesselator *tess)
{
- GLdouble area;
- GLUface *f, *fHead = &tess->mesh->fHead;
- GLUvertex *v, *vHead = &tess->mesh->vHead;
- GLUhalfEdge *e;
+ GLdouble area;
+ GLUface *f, *fHead = &tess->mesh->fHead;
+ GLUvertex *v, *vHead = &tess->mesh->vHead;
+ GLUhalfEdge *e;
- /* When we compute the normal automatically, we choose the orientation
- * so that the sum of the signed areas of all contours is non-negative.
- */
- area = 0;
- for( f = fHead->next; f != fHead; f = f->next ) {
- e = f->anEdge;
- if( e->winding <= 0 ) continue;
- do {
- area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
- e = e->Lnext;
- } while( e != f->anEdge );
- }
- if( area < 0 ) {
- /* Reverse the orientation by flipping all the t-coordinates */
- for( v = vHead->next; v != vHead; v = v->next ) {
- v->t = - v->t;
- }
- tess->tUnit[0] = - tess->tUnit[0];
- tess->tUnit[1] = - tess->tUnit[1];
- tess->tUnit[2] = - tess->tUnit[2];
- }
+ /* When we compute the normal automatically, we choose the orientation
+ * so that the sum of the signed areas of all contours is non-negative.
+ */
+ area = 0;
+ for (f = fHead->next; f != fHead; f = f->next) {
+ e = f->anEdge;
+ if (e->winding <= 0)
+ continue;
+ do {
+ area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
+ e = e->Lnext;
+ } while (e != f->anEdge);
+ }
+ if (area < 0) {
+ /* Reverse the orientation by flipping all the t-coordinates */
+ for (v = vHead->next; v != vHead; v = v->next) {
+ v->t = -v->t;
+ }
+ tess->tUnit[0] = -tess->tUnit[0];
+ tess->tUnit[1] = -tess->tUnit[1];
+ tess->tUnit[2] = -tess->tUnit[2];
+ }
}
#ifdef FOR_TRITE_TEST_PROGRAM
@@ -195,63 +214,63 @@ extern int RandomSweep;
/* Determine the polygon normal and project vertices onto the plane
* of the polygon.
*/
-void __gl_projectPolygon( GLUtesselator *tess )
+void __gl_projectPolygon(GLUtesselator *tess)
{
- GLUvertex *v, *vHead = &tess->mesh->vHead;
- GLdouble norm[3];
- GLdouble *sUnit, *tUnit;
- int i, computedNormal = FALSE;
+ GLUvertex *v, *vHead = &tess->mesh->vHead;
+ GLdouble norm[3];
+ GLdouble *sUnit, *tUnit;
+ int i, computedNormal = FALSE;
- norm[0] = tess->normal[0];
- norm[1] = tess->normal[1];
- norm[2] = tess->normal[2];
- if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
- ComputeNormal( tess, norm );
- computedNormal = TRUE;
- }
- sUnit = tess->sUnit;
- tUnit = tess->tUnit;
- i = LongAxis( norm );
+ norm[0] = tess->normal[0];
+ norm[1] = tess->normal[1];
+ norm[2] = tess->normal[2];
+ if (norm[0] == 0 && norm[1] == 0 && norm[2] == 0) {
+ ComputeNormal(tess, norm);
+ computedNormal = TRUE;
+ }
+ sUnit = tess->sUnit;
+ tUnit = tess->tUnit;
+ i = LongAxis(norm);
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
- /* Choose the initial sUnit vector to be approximately perpendicular
- * to the normal.
- */
- Normalize( norm );
+ /* Choose the initial sUnit vector to be approximately perpendicular
+ * to the normal.
+ */
+ Normalize( norm );
- sUnit[i] = 0;
- sUnit[(i+1)%3] = S_UNIT_X;
- sUnit[(i+2)%3] = S_UNIT_Y;
+ sUnit[i] = 0;
+ sUnit[(i+1)%3] = S_UNIT_X;
+ sUnit[(i+2)%3] = S_UNIT_Y;
- /* Now make it exactly perpendicular */
- w = Dot( sUnit, norm );
- sUnit[0] -= w * norm[0];
- sUnit[1] -= w * norm[1];
- sUnit[2] -= w * norm[2];
- Normalize( sUnit );
+ /* Now make it exactly perpendicular */
+ w = Dot( sUnit, norm );
+ sUnit[0] -= w * norm[0];
+ sUnit[1] -= w * norm[1];
+ sUnit[2] -= w * norm[2];
+ Normalize( sUnit );
- /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
- tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
- tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
- tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
- Normalize( tUnit );
+ /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
+ tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
+ tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
+ tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
+ Normalize( tUnit );
#else
- /* Project perpendicular to a coordinate axis -- better numerically */
- sUnit[i] = 0;
- sUnit[(i+1)%3] = S_UNIT_X;
- sUnit[(i+2)%3] = S_UNIT_Y;
+ /* Project perpendicular to a coordinate axis -- better numerically */
+ sUnit[i] = 0;
+ sUnit[(i + 1) % 3] = S_UNIT_X;
+ sUnit[(i + 2) % 3] = S_UNIT_Y;
- tUnit[i] = 0;
- tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
- tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
+ tUnit[i] = 0;
+ tUnit[(i + 1) % 3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
+ tUnit[(i + 2) % 3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
#endif
- /* Project the vertices onto the sweep plane */
- for( v = vHead->next; v != vHead; v = v->next ) {
- v->s = Dot( v->coords, sUnit );
- v->t = Dot( v->coords, tUnit );
- }
- if( computedNormal ) {
- CheckOrientation( tess );
- }
+ /* Project the vertices onto the sweep plane */
+ for (v = vHead->next; v != vHead; v = v->next) {
+ v->s = Dot( v->coords, sUnit );
+ v->t = Dot( v->coords, tUnit );
+ }
+ if (computedNormal) {
+ CheckOrientation(tess);
+ }
}
diff --git a/vtm/jni/tessellate/render.c b/vtm/jni/tessellate/render.c
index bca836f0..6a195c69 100644
--- a/vtm/jni/tessellate/render.c
+++ b/vtm/jni/tessellate/render.c
@@ -28,13 +28,14 @@
* Silicon Graphics, Inc.
*/
/*
-** Author: Eric Veach, July 1994.
-**
-*/
+ ** Author: Eric Veach, July 1994.
+ **
+ */
#include "gluos.h"
#include
#include
+#include
#include "mesh.h"
#include "tess.h"
#include "render.h"
@@ -51,24 +52,22 @@
* primitive is able to use the most triangles.
*/
struct FaceCount {
- long size; /* number of triangles used */
- GLUhalfEdge *eStart; /* edge where this primitive starts */
- void (*render)(GLUtesselator *, GLUhalfEdge *, long);
- /* routine to render this primitive */
+ long size; /* number of triangles used */
+ GLUhalfEdge *eStart; /* edge where this primitive starts */
+ void (*render)(GLUtesselator *, GLUhalfEdge *, long);
+/* routine to render this primitive */
};
-static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
-static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
-
-static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
-static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
-static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
- long size );
-
-static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
-static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
+static struct FaceCount MaximumFan(GLUhalfEdge *eOrig);
+static struct FaceCount MaximumStrip(GLUhalfEdge *eOrig);
+static void RenderFan(GLUtesselator *tess, GLUhalfEdge *eStart, long size);
+static void RenderStrip(GLUtesselator *tess, GLUhalfEdge *eStart, long size);
+static void RenderTriangle(GLUtesselator *tess, GLUhalfEdge *eStart,
+ long size);
+static void RenderMaximumFaceGroup(GLUtesselator *tess, GLUface *fOrig);
+static void RenderLonelyTriangles(GLUtesselator *tess, GLUface *head);
/************************ Strips and Fans decomposition ******************/
@@ -79,63 +78,79 @@ static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
*
* The rendering output is provided as callbacks (see the api).
*/
-void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
+void __gl_renderMesh(GLUtesselator *tess, GLUmesh *mesh)
{
- GLUface *f;
+ GLUface *f;
- /* Make a list of separate triangles so we can render them all at once */
- tess->lonelyTriList = NULL;
+ /* Make a list of separate triangles so we can render them all at once */
+ tess->lonelyTriList = NULL;
- for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
- f->marked = FALSE;
- }
- for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
+ for (f = mesh->fHead.next; f != &mesh->fHead; f = f->next) {
+ f->marked = FALSE;
+ }
+ for (f = mesh->fHead.next; f != &mesh->fHead; f = f->next) {
- /* We examine all faces in an arbitrary order. Whenever we find
- * an unprocessed face F, we output a group of faces including F
- * whose size is maximum.
- */
- if( f->inside && ! f->marked ) {
- RenderMaximumFaceGroup( tess, f );
- assert( f->marked );
- }
- }
- if( tess->lonelyTriList != NULL ) {
- RenderLonelyTriangles( tess, tess->lonelyTriList );
- tess->lonelyTriList = NULL;
- }
+ /* We examine all faces in an arbitrary order. Whenever we find
+ * an unprocessed face F, we output a group of faces including F
+ * whose size is maximum.
+ */
+ if (f->inside && !f->marked) {
+ RenderMaximumFaceGroup(tess, f);
+ assert( f->marked);
+ }
+ }
+ if (tess->lonelyTriList != NULL) {
+ RenderLonelyTriangles(tess, tess->lonelyTriList);
+ tess->lonelyTriList = NULL;
+ }
}
-
-static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
+static void RenderMaximumFaceGroup(GLUtesselator *tess, GLUface *fOrig)
{
- /* We want to find the largest triangle fan or strip of unmarked faces
- * which includes the given face fOrig. There are 3 possible fans
- * passing through fOrig (one centered at each vertex), and 3 possible
- * strips (one for each CCW permutation of the vertices). Our strategy
- * is to try all of these, and take the primitive which uses the most
- * triangles (a greedy approach).
- */
- GLUhalfEdge *e = fOrig->anEdge;
- struct FaceCount max, newFace;
+ /* We want to find the largest triangle fan or strip of unmarked faces
+ * which includes the given face fOrig. There are 3 possible fans
+ * passing through fOrig (one centered at each vertex), and 3 possible
+ * strips (one for each CCW permutation of the vertices). Our strategy
+ * is to try all of these, and take the primitive which uses the most
+ * triangles (a greedy approach).
+ */
+ GLUhalfEdge *e = fOrig->anEdge;
+ struct FaceCount max, newFace;
- max.size = 1;
- max.eStart = e;
- max.render = &RenderTriangle;
+ max.size = 1;
+ max.eStart = e;
+ max.render = &RenderTriangle;
- if( ! tess->flagBoundary ) {
- newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
- newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
- newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
+ if (!tess->flagBoundary) {
+ newFace = MaximumFan(e);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
+ newFace = MaximumFan(e->Lnext);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
+ newFace = MaximumFan(e->Lprev);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
- newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
- newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
- newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
- }
- (*(max.render))( tess, max.eStart, max.size );
+ newFace = MaximumStrip(e);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
+ newFace = MaximumStrip(e->Lnext);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
+ newFace = MaximumStrip(e->Lprev);
+ if (newFace.size > max.size) {
+ max = newFace;
+ }
+ }
+ (*(max.render))(tess, max.eStart, max.size);
}
-
/* Macros which keep track of faces we have marked temporarily, and allow
* us to backtrack when necessary. With triangle fans, this is not
* really necessary, since the only awkward case is a loop of triangles
@@ -153,213 +168,209 @@ static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
} \
} while(0) /* absorb trailing semicolon */
-
-
-static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
+static struct FaceCount MaximumFan(GLUhalfEdge *eOrig)
{
- /* eOrig->Lface is the face we want to render. We want to find the size
- * of a maximal fan around eOrig->Org. To do this we just walk around
- * the origin vertex as far as possible in both directions.
- */
- struct FaceCount newFace = { 0, NULL, &RenderFan };
- GLUface *trail = NULL;
- GLUhalfEdge *e;
+ /* eOrig->Lface is the face we want to render. We want to find the size
+ * of a maximal fan around eOrig->Org. To do this we just walk around
+ * the origin vertex as far as possible in both directions.
+ */
+ struct FaceCount newFace = { 0, NULL, &RenderFan };
+ GLUface *trail = NULL;
+ GLUhalfEdge *e;
- for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
- AddToTrail( e->Lface, trail );
- ++newFace.size;
- }
- for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
- AddToTrail( e->Rface, trail );
- ++newFace.size;
- }
- newFace.eStart = e;
- /*LINTED*/
- FreeTrail( trail );
- return newFace;
+ for (e = eOrig; !Marked( e->Lface ); e = e->Onext) {
+ AddToTrail( e->Lface, trail);
+ ++newFace.size;
+ }
+ for (e = eOrig; !Marked( e->Rface ); e = e->Oprev) {
+ AddToTrail( e->Rface, trail);
+ ++newFace.size;
+ }
+ newFace.eStart = e;
+ /*LINTED*/
+ FreeTrail( trail);
+ return newFace;
}
-
#define IsEven(n) (((n) & 1) == 0)
-static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
+static struct FaceCount MaximumStrip(GLUhalfEdge *eOrig)
{
- /* Here we are looking for a maximal strip that contains the vertices
- * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
- * reverse, such that all triangles are oriented CCW).
- *
- * Again we walk forward and backward as far as possible. However for
- * strips there is a twist: to get CCW orientations, there must be
- * an *even* number of triangles in the strip on one side of eOrig.
- * We walk the strip starting on a side with an even number of triangles;
- * if both side have an odd number, we are forced to shorten one side.
- */
- struct FaceCount newFace = { 0, NULL, &RenderStrip };
- long headSize = 0, tailSize = 0;
- GLUface *trail = NULL;
- GLUhalfEdge *e, *eTail, *eHead;
+ /* Here we are looking for a maximal strip that contains the vertices
+ * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
+ * reverse, such that all triangles are oriented CCW).
+ *
+ * Again we walk forward and backward as far as possible. However for
+ * strips there is a twist: to get CCW orientations, there must be
+ * an *even* number of triangles in the strip on one side of eOrig.
+ * We walk the strip starting on a side with an even number of triangles;
+ * if both side have an odd number, we are forced to shorten one side.
+ */
+ struct FaceCount newFace = { 0, NULL, &RenderStrip };
+ long headSize = 0, tailSize = 0;
+ GLUface *trail = NULL;
+ GLUhalfEdge *e, *eTail, *eHead;
- for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
- AddToTrail( e->Lface, trail );
- ++tailSize;
- e = e->Dprev;
- if( Marked( e->Lface )) break;
- AddToTrail( e->Lface, trail );
- }
- eTail = e;
+ for (e = eOrig; !Marked( e->Lface ); ++tailSize, e = e->Onext) {
+ AddToTrail( e->Lface, trail);
+ ++tailSize;
+ e = e->Dprev;
+ if (Marked( e->Lface ))
+ break;
+ AddToTrail( e->Lface, trail);
+ }
+ eTail = e;
- for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
- AddToTrail( e->Rface, trail );
- ++headSize;
- e = e->Oprev;
- if( Marked( e->Rface )) break;
- AddToTrail( e->Rface, trail );
- }
- eHead = e;
+ for (e = eOrig; !Marked( e->Rface ); ++headSize, e = e->Dnext) {
+ AddToTrail( e->Rface, trail);
+ ++headSize;
+ e = e->Oprev;
+ if (Marked( e->Rface ))
+ break;
+ AddToTrail( e->Rface, trail);
+ }
+ eHead = e;
- newFace.size = tailSize + headSize;
- if( IsEven( tailSize )) {
- newFace.eStart = eTail->Sym;
- } else if( IsEven( headSize )) {
- newFace.eStart = eHead;
- } else {
- /* Both sides have odd length, we must shorten one of them. In fact,
- * we must start from eHead to guarantee inclusion of eOrig->Lface.
- */
- --newFace.size;
- newFace.eStart = eHead->Onext;
- }
- /*LINTED*/
- FreeTrail( trail );
- return newFace;
+ newFace.size = tailSize + headSize;
+ if (IsEven( tailSize )) {
+ newFace.eStart = eTail->Sym;
+ }
+ else if (IsEven( headSize )) {
+ newFace.eStart = eHead;
+ }
+ else {
+ /* Both sides have odd length, we must shorten one of them. In fact,
+ * we must start from eHead to guarantee inclusion of eOrig->Lface.
+ */
+ --newFace.size;
+ newFace.eStart = eHead->Onext;
+ }
+ /*LINTED*/
+ FreeTrail( trail);
+ return newFace;
}
-
-static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
+static void RenderTriangle(GLUtesselator *tess, GLUhalfEdge *e, long size)
{
- /* Just add the triangle to a triangle list, so we can render all
- * the separate triangles at once.
- */
- assert( size == 1 );
- AddToTrail( e->Lface, tess->lonelyTriList );
+ /* Just add the triangle to a triangle list, so we can render all
+ * the separate triangles at once.
+ */
+ assert( size == 1);
+ AddToTrail( e->Lface, tess->lonelyTriList);
}
-
-static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
+static void RenderLonelyTriangles(GLUtesselator *tess, GLUface *f)
{
- /* Now we render all the separate triangles which could not be
- * grouped into a triangle fan or strip.
- */
- GLUhalfEdge *e;
- int newState;
- int edgeState = -1; /* force edge state output for first vertex */
+ /* Now we render all the separate triangles which could not be
+ * grouped into a triangle fan or strip.
+ */
+ GLUhalfEdge *e;
+ int newState;
+ int edgeState = -1; /* force edge state output for first vertex */
- CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
+ CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES);
- for( ; f != NULL; f = f->trail ) {
- /* Loop once for each edge (there will always be 3 edges) */
+ for (; f != NULL; f = f->trail) {
+ /* Loop once for each edge (there will always be 3 edges) */
- e = f->anEdge;
- do {
- if( tess->flagBoundary ) {
- /* Set the "edge state" to TRUE just before we output the
- * first vertex of each edge on the polygon boundary.
- */
- newState = ! e->Rface->inside;
- if( edgeState != newState ) {
- edgeState = newState;
- CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
- }
- }
- CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
+ e = f->anEdge;
+ do {
+ if (tess->flagBoundary) {
+ /* Set the "edge state" to TRUE just before we output the
+ * first vertex of each edge on the polygon boundary.
+ */
+ newState = !e->Rface->inside;
+ if (edgeState != newState) {
+ edgeState = newState;
+ CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState);
+ }
+ }
+ CALL_VERTEX_OR_VERTEX_DATA( e->Org->data);
- e = e->Lnext;
- } while( e != f->anEdge );
- }
- CALL_END_OR_END_DATA();
+ e = e->Lnext;
+ } while (e != f->anEdge);
+ }
+ CALL_END_OR_END_DATA();
}
-
-static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
+static void RenderFan(GLUtesselator *tess, GLUhalfEdge *e, long size)
{
- /* Render as many CCW triangles as possible in a fan starting from
- * edge "e". The fan *should* contain exactly "size" triangles
- * (otherwise we've goofed up somewhere).
- */
- CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
- CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
- CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
+ /* Render as many CCW triangles as possible in a fan starting from
+ * edge "e". The fan *should* contain exactly "size" triangles
+ * (otherwise we've goofed up somewhere).
+ */
+ CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN);
+ CALL_VERTEX_OR_VERTEX_DATA( e->Org->data);
+ CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data);
- while( ! Marked( e->Lface )) {
- e->Lface->marked = TRUE;
- --size;
- e = e->Onext;
- CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
- }
+ while (!Marked( e->Lface )) {
+ e->Lface->marked = TRUE;
+ --size;
+ e = e->Onext;
+ CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data);
+ }
- assert( size == 0 );
- CALL_END_OR_END_DATA();
+ assert( size == 0);
+ CALL_END_OR_END_DATA();
}
-
-static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
+static void RenderStrip(GLUtesselator *tess, GLUhalfEdge *e, long size)
{
- /* Render as many CCW triangles as possible in a strip starting from
- * edge "e". The strip *should* contain exactly "size" triangles
- * (otherwise we've goofed up somewhere).
- */
- CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
- CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
- CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
+ /* Render as many CCW triangles as possible in a strip starting from
+ * edge "e". The strip *should* contain exactly "size" triangles
+ * (otherwise we've goofed up somewhere).
+ */
+ CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP);
+ CALL_VERTEX_OR_VERTEX_DATA( e->Org->data);
+ CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data);
- while( ! Marked( e->Lface )) {
- e->Lface->marked = TRUE;
- --size;
- e = e->Dprev;
- CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
- if( Marked( e->Lface )) break;
+ while (!Marked( e->Lface )) {
+ e->Lface->marked = TRUE;
+ --size;
+ e = e->Dprev;
+ CALL_VERTEX_OR_VERTEX_DATA( e->Org->data);
+ if (Marked( e->Lface ))
+ break;
- e->Lface->marked = TRUE;
- --size;
- e = e->Onext;
- CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
- }
+ e->Lface->marked = TRUE;
+ --size;
+ e = e->Onext;
+ CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data);
+ }
- assert( size == 0 );
- CALL_END_OR_END_DATA();
+ assert( size == 0);
+ CALL_END_OR_END_DATA();
}
-
/************************ Boundary contour decomposition ******************/
/* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
* contour for each face marked "inside". The rendering output is
* provided as callbacks (see the api).
*/
-void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
+void __gl_renderBoundary(GLUtesselator *tess, GLUmesh *mesh)
{
- GLUface *f;
- GLUhalfEdge *e;
+ GLUface *f;
+ GLUhalfEdge *e;
- for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
- if( f->inside ) {
- CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
- e = f->anEdge;
- do {
- CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
- e = e->Lnext;
- } while( e != f->anEdge );
- CALL_END_OR_END_DATA();
- }
- }
+ for (f = mesh->fHead.next; f != &mesh->fHead; f = f->next) {
+ if (f->inside) {
+ CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP);
+ e = f->anEdge;
+ do {
+ CALL_VERTEX_OR_VERTEX_DATA( e->Org->data);
+ e = e->Lnext;
+ } while (e != f->anEdge);
+ CALL_END_OR_END_DATA();
+ }
+ }
}
-
/************************ Quick-and-dirty decomposition ******************/
#define SIGN_INCONSISTENT 2
-static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
+static int ComputeNormal(GLUtesselator *tess, GLdouble norm[3], int check)
/*
* If check==FALSE, we compute the polygon normal and place it in norm[].
* If check==TRUE, we check that each triangle in the fan from v0 has a
@@ -369,66 +380,79 @@ static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
* SIGN_INCONSISTENT.
*/
{
- CachedVertex *v0 = tess->cache;
- CachedVertex *vn = v0 + tess->cacheCount;
- CachedVertex *vc;
- GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
- int sign = 0;
+ CachedVertex *v0 = tess->cache;
+ CachedVertex *vn = v0 + tess->cacheCount;
+ CachedVertex *vc;
+ GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
+ int sign = 0;
- /* Find the polygon normal. It is important to get a reasonable
- * normal even when the polygon is self-intersecting (eg. a bowtie).
- * Otherwise, the computed normal could be very tiny, but perpendicular
- * to the true plane of the polygon due to numerical noise. Then all
- * the triangles would appear to be degenerate and we would incorrectly
- * decompose the polygon as a fan (or simply not render it at all).
- *
- * We use a sum-of-triangles normal algorithm rather than the more
- * efficient sum-of-trapezoids method (used in CheckOrientation()
- * in normal.c). This lets us explicitly reverse the signed area
- * of some triangles to get a reasonable normal in the self-intersecting
- * case.
- */
- if( ! check ) {
- norm[0] = norm[1] = norm[2] = 0.0;
- }
+ /* Find the polygon normal. It is important to get a reasonable
+ * normal even when the polygon is self-intersecting (eg. a bowtie).
+ * Otherwise, the computed normal could be very tiny, but perpendicular
+ * to the true plane of the polygon due to numerical noise. Then all
+ * the triangles would appear to be degenerate and we would incorrectly
+ * decompose the polygon as a fan (or simply not render it at all).
+ *
+ * We use a sum-of-triangles normal algorithm rather than the more
+ * efficient sum-of-trapezoids method (used in CheckOrientation()
+ * in normal.c). This lets us explicitly reverse the signed area
+ * of some triangles to get a reasonable normal in the self-intersecting
+ * case.
+ */
+ if (!check) {
+ norm[0] = norm[1] = norm[2] = 0.0;
+ }
- vc = v0 + 1;
- xc = vc->coords[0] - v0->coords[0];
- yc = vc->coords[1] - v0->coords[1];
- zc = vc->coords[2] - v0->coords[2];
- while( ++vc < vn ) {
- xp = xc; yp = yc; zp = zc;
- xc = vc->coords[0] - v0->coords[0];
- yc = vc->coords[1] - v0->coords[1];
- zc = vc->coords[2] - v0->coords[2];
+ vc = v0 + 1;
+ xc = vc->coords[0] - v0->coords[0];
+ yc = vc->coords[1] - v0->coords[1];
+ zc = vc->coords[2] - v0->coords[2];
+ while (++vc < vn) {
+ xp = xc;
+ yp = yc;
+ zp = zc;
+ xc = vc->coords[0] - v0->coords[0];
+ yc = vc->coords[1] - v0->coords[1];
+ zc = vc->coords[2] - v0->coords[2];
- /* Compute (vp - v0) cross (vc - v0) */
- n[0] = yp*zc - zp*yc;
- n[1] = zp*xc - xp*zc;
- n[2] = xp*yc - yp*xc;
+ /* Compute (vp - v0) cross (vc - v0) */
+ n[0] = yp * zc - zp * yc;
+ n[1] = zp * xc - xp * zc;
+ n[2] = xp * yc - yp * xc;
- dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
- if( ! check ) {
- /* Reverse the contribution of back-facing triangles to get
- * a reasonable normal for self-intersecting polygons (see above)
- */
- if( dot >= 0 ) {
- norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
- } else {
- norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
+ dot = n[0] * norm[0] + n[1] * norm[1] + n[2] * norm[2];
+ if (!check) {
+ /* Reverse the contribution of back-facing triangles to get
+ * a reasonable normal for self-intersecting polygons (see above)
+ */
+ if (dot >= 0) {
+ norm[0] += n[0];
+ norm[1] += n[1];
+ norm[2] += n[2];
+ }
+ else {
+ norm[0] -= n[0];
+ norm[1] -= n[1];
+ norm[2] -= n[2];
+ }
}
- } else if( dot != 0 ) {
- /* Check the new orientation for consistency with previous triangles */
- if( dot > 0 ) {
- if( sign < 0 ) return SIGN_INCONSISTENT;
- sign = 1;
- } else {
- if( sign > 0 ) return SIGN_INCONSISTENT;
- sign = -1;
+ else if (dot != 0) {
+ /* Check the new orientation for consistency with previous triangles */
+ if (dot > 0) {
+ if (sign < 0)
+ return SIGN_INCONSISTENT;
+ sign = 1;
+ }
+ else {
+ if (sign > 0)
+ return SIGN_INCONSISTENT;
+ sign = -1;
+ }
}
- }
- }
- return sign;
+ }
+ //printf("%f, %f, %f -- %d\n", norm[0], norm[1], norm[2], sign);
+
+ return sign;
}
/* __gl_renderCache( tess ) takes a single contour and tries to render it
@@ -438,65 +462,68 @@ static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
* Returns TRUE if the polygon was successfully rendered. The rendering
* output is provided as callbacks (see the api).
*/
-GLboolean __gl_renderCache( GLUtesselator *tess )
+GLboolean __gl_renderCache(GLUtesselator *tess)
{
- CachedVertex *v0 = tess->cache;
- CachedVertex *vn = v0 + tess->cacheCount;
- CachedVertex *vc;
- GLdouble norm[3];
- int sign;
+ CachedVertex *v0 = tess->cache;
+ CachedVertex *vn = v0 + tess->cacheCount;
+ CachedVertex *vc;
+ GLdouble norm[3];
+ int sign;
- if( tess->cacheCount < 3 ) {
- /* Degenerate contour -- no output */
- return TRUE;
- }
+ if (tess->cacheCount < 3) {
+ /* Degenerate contour -- no output */
+ return TRUE;
+ }
- norm[0] = tess->normal[0];
- norm[1] = tess->normal[1];
- norm[2] = tess->normal[2];
- if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
- ComputeNormal( tess, norm, FALSE );
- }
+ norm[0] = tess->normal[0];
+ norm[1] = tess->normal[1];
+ norm[2] = tess->normal[2];
+ if (norm[0] == 0 && norm[1] == 0 && norm[2] == 0) {
+ ComputeNormal(tess, norm, FALSE);
+ }
- sign = ComputeNormal( tess, norm, TRUE );
- if( sign == SIGN_INCONSISTENT ) {
- /* Fan triangles did not have a consistent orientation */
- return FALSE;
- }
- if( sign == 0 ) {
- /* All triangles were degenerate */
- return TRUE;
- }
+ sign = ComputeNormal(tess, norm, TRUE);
+ if (sign == SIGN_INCONSISTENT) {
+ /* Fan triangles did not have a consistent orientation */
+ return FALSE;
+ }
+ if (sign == 0) {
+ /* All triangles were degenerate */
+ return TRUE;
+ }
- /* Make sure we do the right thing for each winding rule */
- switch( tess->windingRule ) {
- case GLU_TESS_WINDING_ODD:
- case GLU_TESS_WINDING_NONZERO:
- break;
- case GLU_TESS_WINDING_POSITIVE:
- if( sign < 0 ) return TRUE;
- break;
- case GLU_TESS_WINDING_NEGATIVE:
- if( sign > 0 ) return TRUE;
- break;
- case GLU_TESS_WINDING_ABS_GEQ_TWO:
- return TRUE;
- }
+ /* Make sure we do the right thing for each winding rule */
+ switch (tess->windingRule) {
+ case GLU_TESS_WINDING_ODD:
+ case GLU_TESS_WINDING_NONZERO:
+ break;
+ case GLU_TESS_WINDING_POSITIVE:
+ if (sign < 0)
+ return TRUE;
+ break;
+ case GLU_TESS_WINDING_NEGATIVE:
+ if (sign > 0)
+ return TRUE;
+ break;
+ case GLU_TESS_WINDING_ABS_GEQ_TWO:
+ return TRUE;
+ }
- CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
- : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
- : GL_TRIANGLES );
+ CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
+ : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
+ : GL_TRIANGLES);
- CALL_VERTEX_OR_VERTEX_DATA( v0->data );
- if( sign > 0 ) {
- for( vc = v0+1; vc < vn; ++vc ) {
- CALL_VERTEX_OR_VERTEX_DATA( vc->data );
- }
- } else {
- for( vc = vn-1; vc > v0; --vc ) {
- CALL_VERTEX_OR_VERTEX_DATA( vc->data );
- }
- }
- CALL_END_OR_END_DATA();
- return TRUE;
+ CALL_VERTEX_OR_VERTEX_DATA( v0->data);
+ if (sign > 0) {
+ for (vc = v0 + 1; vc < vn; ++vc) {
+ CALL_VERTEX_OR_VERTEX_DATA( vc->data);
+ }
+ }
+ else {
+ for (vc = vn - 1; vc > v0; --vc) {
+ CALL_VERTEX_OR_VERTEX_DATA( vc->data);
+ }
+ }
+ CALL_END_OR_END_DATA();
+ return TRUE;
}
diff --git a/vtm/jni/tessellate/tess.c b/vtm/jni/tessellate/tess.c
index 4a0e8dea..ab53c83b 100644
--- a/vtm/jni/tessellate/tess.c
+++ b/vtm/jni/tessellate/tess.c
@@ -28,9 +28,9 @@
* Silicon Graphics, Inc.
*/
/*
-** Author: Eric Veach, July 1994.
-**
-*/
+ ** Author: Eric Veach, July 1994.
+ **
+ */
#include "gluos.h"
#include
@@ -54,579 +54,597 @@
#define FALSE 0
#endif
-/*ARGSUSED*/ static void GLAPIENTRY noBegin( GLenum type ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noEdgeFlag( GLboolean boundaryEdge ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noVertex( void *data ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noEnd( void ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noError( GLenum errnum ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noCombine( GLdouble coords[3], void *data[4],
- GLfloat weight[4], void **dataOut ) {}
-/*ARGSUSED*/ static void GLAPIENTRY noMesh( GLUmesh *mesh ) {}
+/*ARGSUSED*/static void GLAPIENTRY noBegin(GLenum type) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noEdgeFlag(GLboolean boundaryEdge) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noVertex(void *data) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noEnd(void) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noError(GLenum errnum) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noCombine(GLdouble coords[3], void *data[4],
+ GLfloat weight[4], void **dataOut) {
+}
+/*ARGSUSED*/static void GLAPIENTRY noMesh(GLUmesh *mesh) {
+}
-
-/*ARGSUSED*/ void GLAPIENTRY __gl_noBeginData( GLenum type,
- void *polygonData ) {}
-/*ARGSUSED*/ void GLAPIENTRY __gl_noEdgeFlagData( GLboolean boundaryEdge,
- void *polygonData ) {}
-/*ARGSUSED*/ void GLAPIENTRY __gl_noVertexData( void *data,
- void *polygonData ) {}
-/*ARGSUSED*/ void GLAPIENTRY __gl_noEndData( void *polygonData ) {}
-/*ARGSUSED*/ void GLAPIENTRY __gl_noErrorData( GLenum errnum,
- void *polygonData ) {}
-/*ARGSUSED*/ void GLAPIENTRY __gl_noCombineData( GLdouble coords[3],
- void *data[4],
- GLfloat weight[4],
- void **outData,
- void *polygonData ) {}
+/*ARGSUSED*/void GLAPIENTRY __gl_noBeginData(GLenum type,
+ void *polygonData) {
+}
+/*ARGSUSED*/void GLAPIENTRY __gl_noEdgeFlagData(GLboolean boundaryEdge,
+ void *polygonData) {
+}
+/*ARGSUSED*/void GLAPIENTRY __gl_noVertexData(void *data,
+ void *polygonData) {
+}
+/*ARGSUSED*/void GLAPIENTRY __gl_noEndData(void *polygonData) {
+}
+/*ARGSUSED*/void GLAPIENTRY __gl_noErrorData(GLenum errnum,
+ void *polygonData) {
+}
+/*ARGSUSED*/void GLAPIENTRY __gl_noCombineData(GLdouble coords[3],
+ void *data[4],
+ GLfloat weight[4],
+ void **outData,
+ void *polygonData) {
+}
/* Half-edges are allocated in pairs (see mesh.c) */
-typedef struct { GLUhalfEdge e, eSym; } EdgePair;
+typedef struct {
+ GLUhalfEdge e, eSym;
+} EdgePair;
#undef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define MAX_FAST_ALLOC (MAX(sizeof(EdgePair), \
MAX(sizeof(GLUvertex),sizeof(GLUface))))
-
GLUtesselator * GLAPIENTRY
-gluNewTess( void )
+gluNewTess(void)
{
- GLUtesselator *tess;
+ GLUtesselator *tess;
- /* Only initialize fields which can be changed by the api. Other fields
- * are initialized where they are used.
- */
+ /* Only initialize fields which can be changed by the api. Other fields
+ * are initialized where they are used.
+ */
- if (memInit( MAX_FAST_ALLOC ) == 0) {
- return 0; /* out of memory */
- }
- tess = (GLUtesselator *)memAlloc( sizeof( GLUtesselator ));
- if (tess == NULL) {
- return 0; /* out of memory */
- }
+ if (memInit(MAX_FAST_ALLOC) == 0) {
+ return 0; /* out of memory */
+ }
+ tess = (GLUtesselator *) memAlloc(sizeof(GLUtesselator));
+ if (tess == NULL) {
+ return 0; /* out of memory */
+ }
- tess->state = T_DORMANT;
+ tess->state = T_DORMANT;
- tess->normal[0] = 0;
- tess->normal[1] = 0;
- tess->normal[2] = 0;
+ tess->normal[0] = 0;
+ tess->normal[1] = 0;
+ tess->normal[2] = 0;
- tess->relTolerance = GLU_TESS_DEFAULT_TOLERANCE;
- tess->windingRule = GLU_TESS_WINDING_ODD;
- tess->flagBoundary = FALSE;
- tess->boundaryOnly = FALSE;
+ tess->relTolerance = GLU_TESS_DEFAULT_TOLERANCE;
+ tess->windingRule = GLU_TESS_WINDING_ODD;
+ tess->flagBoundary = FALSE;
+ tess->boundaryOnly = FALSE;
- tess->callBegin = &noBegin;
- tess->callEdgeFlag = &noEdgeFlag;
- tess->callVertex = &noVertex;
- tess->callEnd = &noEnd;
+ tess->callBegin = &noBegin;
+ tess->callEdgeFlag = &noEdgeFlag;
+ tess->callVertex = &noVertex;
+ tess->callEnd = &noEnd;
- tess->callError = &noError;
- tess->callCombine = &noCombine;
- tess->callMesh = &noMesh;
+ tess->callError = &noError;
+ tess->callCombine = &noCombine;
+ tess->callMesh = &noMesh;
- tess->callBeginData= &__gl_noBeginData;
- tess->callEdgeFlagData= &__gl_noEdgeFlagData;
- tess->callVertexData= &__gl_noVertexData;
- tess->callEndData= &__gl_noEndData;
- tess->callErrorData= &__gl_noErrorData;
- tess->callCombineData= &__gl_noCombineData;
+ tess->callBeginData = &__gl_noBeginData;
+ tess->callEdgeFlagData = &__gl_noEdgeFlagData;
+ tess->callVertexData = &__gl_noVertexData;
+ tess->callEndData = &__gl_noEndData;
+ tess->callErrorData = &__gl_noErrorData;
+ tess->callCombineData = &__gl_noCombineData;
- tess->polygonData= NULL;
+ tess->polygonData = NULL;
- return tess;
+ return tess;
}
-static void MakeDormant( GLUtesselator *tess )
+static void MakeDormant(GLUtesselator *tess)
{
- /* Return the tessellator to its original dormant state. */
+ /* Return the tessellator to its original dormant state. */
- if( tess->mesh != NULL ) {
- __gl_meshDeleteMesh( tess->mesh );
- }
- tess->state = T_DORMANT;
- tess->lastEdge = NULL;
- tess->mesh = NULL;
+ if (tess->mesh != NULL) {
+ __gl_meshDeleteMesh(tess->mesh);
+ }
+ tess->state = T_DORMANT;
+ tess->lastEdge = NULL;
+ tess->mesh = NULL;
}
#define RequireState( tess, s ) if( tess->state != s ) GotoState(tess,s)
-static void GotoState( GLUtesselator *tess, enum TessState newState )
+static void GotoState(GLUtesselator *tess, enum TessState newState)
{
- while( tess->state != newState ) {
- /* We change the current state one level at a time, to get to
- * the desired state.
- */
- if( tess->state < newState ) {
- switch( tess->state ) {
- case T_DORMANT:
- CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_POLYGON );
- gluTessBeginPolygon( tess, NULL );
- break;
- case T_IN_POLYGON:
- CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_CONTOUR );
- gluTessBeginContour( tess );
- break;
- default:
- ;
+ while (tess->state != newState) {
+ /* We change the current state one level at a time, to get to
+ * the desired state.
+ */
+ if (tess->state < newState) {
+ switch (tess->state) {
+ case T_DORMANT:
+ CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_POLYGON);
+ gluTessBeginPolygon(tess, NULL);
+ break;
+ case T_IN_POLYGON:
+ CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_CONTOUR);
+ gluTessBeginContour(tess);
+ break;
+ default:
+ ;
+ }
}
- } else {
- switch( tess->state ) {
- case T_IN_CONTOUR:
- CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_CONTOUR );
- gluTessEndContour( tess );
- break;
- case T_IN_POLYGON:
- CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_POLYGON );
- /* gluTessEndPolygon( tess ) is too much work! */
- MakeDormant( tess );
- break;
- default:
- ;
+ else {
+ switch (tess->state) {
+ case T_IN_CONTOUR:
+ CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_CONTOUR);
+ gluTessEndContour(tess);
+ break;
+ case T_IN_POLYGON:
+ CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_POLYGON);
+ /* gluTessEndPolygon( tess ) is too much work! */
+ MakeDormant(tess);
+ break;
+ default:
+ ;
+ }
}
- }
- }
+ }
}
-
void GLAPIENTRY
-gluDeleteTess( GLUtesselator *tess )
+gluDeleteTess(GLUtesselator *tess)
{
- RequireState( tess, T_DORMANT );
- memFree( tess );
+ RequireState( tess, T_DORMANT);
+ memFree(tess);
}
-
void GLAPIENTRY
-gluTessProperty( GLUtesselator *tess, GLenum which, GLdouble value )
+gluTessProperty(GLUtesselator *tess, GLenum which, GLdouble value)
{
- GLenum windingRule;
+ GLenum windingRule;
- switch( which ) {
- case GLU_TESS_TOLERANCE:
- if( value < 0.0 || value > 1.0 ) break;
- tess->relTolerance = value;
- return;
-
- case GLU_TESS_WINDING_RULE:
- windingRule = (GLenum) value;
- if( windingRule != value ) break; /* not an integer */
-
- switch( windingRule ) {
- case GLU_TESS_WINDING_ODD:
- case GLU_TESS_WINDING_NONZERO:
- case GLU_TESS_WINDING_POSITIVE:
- case GLU_TESS_WINDING_NEGATIVE:
- case GLU_TESS_WINDING_ABS_GEQ_TWO:
- tess->windingRule = windingRule;
+ switch (which) {
+ case GLU_TESS_TOLERANCE:
+ if (value < 0.0 || value > 1.0)
+ break;
+ tess->relTolerance = value;
return;
- default:
- break;
- }
- case GLU_TESS_BOUNDARY_ONLY:
- tess->boundaryOnly = (value != 0);
- return;
+ case GLU_TESS_WINDING_RULE:
+ windingRule = (GLenum) value;
+ if (windingRule != value)
+ break; /* not an integer */
- default:
- CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM );
- return;
- }
- CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_VALUE );
+ switch (windingRule) {
+ case GLU_TESS_WINDING_ODD:
+ case GLU_TESS_WINDING_NONZERO:
+ case GLU_TESS_WINDING_POSITIVE:
+ case GLU_TESS_WINDING_NEGATIVE:
+ case GLU_TESS_WINDING_ABS_GEQ_TWO:
+ tess->windingRule = windingRule;
+ return;
+ default:
+ break;
+ }
+
+ case GLU_TESS_BOUNDARY_ONLY:
+ tess->boundaryOnly = (value != 0);
+ return;
+
+ default:
+ CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM);
+ return;
+ }
+ CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_VALUE);
}
/* Returns tessellator property */
void GLAPIENTRY
-gluGetTessProperty( GLUtesselator *tess, GLenum which, GLdouble *value )
+gluGetTessProperty(GLUtesselator *tess, GLenum which, GLdouble *value)
{
switch (which) {
case GLU_TESS_TOLERANCE:
/* tolerance should be in range [0..1] */
assert(0.0 <= tess->relTolerance && tess->relTolerance <= 1.0);
- *value= tess->relTolerance;
+ *value = tess->relTolerance;
break;
case GLU_TESS_WINDING_RULE:
assert(tess->windingRule == GLU_TESS_WINDING_ODD ||
- tess->windingRule == GLU_TESS_WINDING_NONZERO ||
- tess->windingRule == GLU_TESS_WINDING_POSITIVE ||
- tess->windingRule == GLU_TESS_WINDING_NEGATIVE ||
- tess->windingRule == GLU_TESS_WINDING_ABS_GEQ_TWO);
- *value= tess->windingRule;
+ tess->windingRule == GLU_TESS_WINDING_NONZERO ||
+ tess->windingRule == GLU_TESS_WINDING_POSITIVE ||
+ tess->windingRule == GLU_TESS_WINDING_NEGATIVE ||
+ tess->windingRule == GLU_TESS_WINDING_ABS_GEQ_TWO);
+ *value = tess->windingRule;
break;
case GLU_TESS_BOUNDARY_ONLY:
assert(tess->boundaryOnly == TRUE || tess->boundaryOnly == FALSE);
- *value= tess->boundaryOnly;
+ *value = tess->boundaryOnly;
break;
default:
- *value= 0.0;
- CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM );
+ *value = 0.0;
+ CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM);
break;
}
} /* gluGetTessProperty() */
void GLAPIENTRY
-gluTessNormal( GLUtesselator *tess, GLdouble x, GLdouble y, GLdouble z )
+gluTessNormal(GLUtesselator *tess, GLdouble x, GLdouble y, GLdouble z)
{
- tess->normal[0] = x;
- tess->normal[1] = y;
- tess->normal[2] = z;
+ tess->normal[0] = x;
+ tess->normal[1] = y;
+ tess->normal[2] = z;
}
void GLAPIENTRY
-gluTessCallback( GLUtesselator *tess, GLenum which, _GLUfuncptr fn)
+gluTessCallback(GLUtesselator *tess, GLenum which, _GLUfuncptr fn)
{
- switch( which ) {
- case GLU_TESS_BEGIN:
- tess->callBegin = (fn == NULL) ? &noBegin : (void (GLAPIENTRY *)(GLenum)) fn;
- return;
- case GLU_TESS_BEGIN_DATA:
- tess->callBeginData = (fn == NULL) ?
- &__gl_noBeginData : (void (GLAPIENTRY *)(GLenum, void *)) fn;
- return;
- case GLU_TESS_EDGE_FLAG:
- tess->callEdgeFlag = (fn == NULL) ? &noEdgeFlag :
- (void (GLAPIENTRY *)(GLboolean)) fn;
- /* If the client wants boundary edges to be flagged,
- * we render everything as separate triangles (no strips or fans).
- */
- tess->flagBoundary = (fn != NULL);
- return;
- case GLU_TESS_EDGE_FLAG_DATA:
- tess->callEdgeFlagData= (fn == NULL) ?
- &__gl_noEdgeFlagData : (void (GLAPIENTRY *)(GLboolean, void *)) fn;
- /* If the client wants boundary edges to be flagged,
- * we render everything as separate triangles (no strips or fans).
- */
- tess->flagBoundary = (fn != NULL);
- return;
- case GLU_TESS_VERTEX:
- tess->callVertex = (fn == NULL) ? &noVertex :
- (void (GLAPIENTRY *)(void *)) fn;
- return;
- case GLU_TESS_VERTEX_DATA:
- tess->callVertexData = (fn == NULL) ?
- &__gl_noVertexData : (void (GLAPIENTRY *)(void *, void *)) fn;
- return;
- case GLU_TESS_END:
- tess->callEnd = (fn == NULL) ? &noEnd : (void (GLAPIENTRY *)(void)) fn;
- return;
- case GLU_TESS_END_DATA:
- tess->callEndData = (fn == NULL) ? &__gl_noEndData :
- (void (GLAPIENTRY *)(void *)) fn;
- return;
- case GLU_TESS_ERROR:
- tess->callError = (fn == NULL) ? &noError : (void (GLAPIENTRY *)(GLenum)) fn;
- return;
- case GLU_TESS_ERROR_DATA:
- tess->callErrorData = (fn == NULL) ?
- &__gl_noErrorData : (void (GLAPIENTRY *)(GLenum, void *)) fn;
- return;
- case GLU_TESS_COMBINE:
- tess->callCombine = (fn == NULL) ? &noCombine :
- (void (GLAPIENTRY *)(GLdouble [3],void *[4], GLfloat [4], void ** )) fn;
- return;
- case GLU_TESS_COMBINE_DATA:
- tess->callCombineData = (fn == NULL) ? &__gl_noCombineData :
- (void (GLAPIENTRY *)(GLdouble [3],
- void *[4],
- GLfloat [4],
- void **,
- void *)) fn;
- return;
- case GLU_TESS_MESH:
- tess->callMesh = (fn == NULL) ? &noMesh : (void (GLAPIENTRY *)(GLUmesh *)) fn;
- return;
- default:
- CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM );
- return;
- }
-}
-
-static int AddVertex( GLUtesselator *tess, GLdouble coords[3], void *data )
-{
- GLUhalfEdge *e;
-
- e = tess->lastEdge;
- if( e == NULL ) {
- /* Make a self-loop (one vertex, one edge). */
-
- e = __gl_meshMakeEdge( tess->mesh );
- if (e == NULL) return 0;
- if ( !__gl_meshSplice( e, e->Sym ) ) return 0;
- } else {
- /* Create a new vertex and edge which immediately follow e
- * in the ordering around the left face.
- */
- if (__gl_meshSplitEdge( e ) == NULL) return 0;
- e = e->Lnext;
- }
-
- /* The new vertex is now e->Org. */
- e->Org->data = data;
- e->Org->coords[0] = coords[0];
- e->Org->coords[1] = coords[1];
- e->Org->coords[2] = coords[2];
-
- /* The winding of an edge says how the winding number changes as we
- * cross from the edge''s right face to its left face. We add the
- * vertices in such an order that a CCW contour will add +1 to
- * the winding number of the region inside the contour.
- */
- e->winding = 1;
- e->Sym->winding = -1;
-
- tess->lastEdge = e;
-
- return 1;
-}
-
-
-static void CacheVertex( GLUtesselator *tess, GLdouble coords[3], void *data )
-{
- CachedVertex *v = &tess->cache[tess->cacheCount];
-
- v->data = data;
- v->coords[0] = coords[0];
- v->coords[1] = coords[1];
- v->coords[2] = coords[2];
- ++tess->cacheCount;
-}
-
-
-static int EmptyCache( GLUtesselator *tess )
-{
- CachedVertex *v = tess->cache;
- CachedVertex *vLast;
-
- tess->mesh = __gl_meshNewMesh();
- if (tess->mesh == NULL) return 0;
-
- for( vLast = v + tess->cacheCount; v < vLast; ++v ) {
- if ( !AddVertex( tess, v->coords, v->data ) ) return 0;
- }
- tess->cacheCount = 0;
- tess->emptyCache = FALSE;
-
- return 1;
-}
-
-
-void GLAPIENTRY
-gluTessVertex( GLUtesselator *tess, GLdouble coords[3], void *data )
-{
- int i, tooLarge = FALSE;
- GLdouble x, clamped[3];
-
- RequireState( tess, T_IN_CONTOUR );
-
- if( tess->emptyCache ) {
- if ( !EmptyCache( tess ) ) {
- CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY );
- return;
- }
- tess->lastEdge = NULL;
- }
- for( i = 0; i < 3; ++i ) {
- x = coords[i];
- if( x < - GLU_TESS_MAX_COORD ) {
- x = - GLU_TESS_MAX_COORD;
- tooLarge = TRUE;
- }
- if( x > GLU_TESS_MAX_COORD ) {
- x = GLU_TESS_MAX_COORD;
- tooLarge = TRUE;
- }
- clamped[i] = x;
- }
- if( tooLarge ) {
- CALL_ERROR_OR_ERROR_DATA( GLU_TESS_COORD_TOO_LARGE );
- }
-
- if( tess->mesh == NULL ) {
- if( tess->cacheCount < TESS_MAX_CACHE ) {
- CacheVertex( tess, clamped, data );
+ switch (which) {
+ case GLU_TESS_BEGIN:
+ tess->callBegin = (fn == NULL) ? &noBegin : (void (GLAPIENTRY *)(GLenum)) fn;
return;
- }
- if ( !EmptyCache( tess ) ) {
- CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY );
- return;
- }
- }
- if ( !AddVertex( tess, clamped, data ) ) {
- CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY );
- }
-}
-
-
-void GLAPIENTRY
-gluTessBeginPolygon( GLUtesselator *tess, void *data )
-{
- RequireState( tess, T_DORMANT );
-
- tess->state = T_IN_POLYGON;
- tess->cacheCount = 0;
- tess->emptyCache = FALSE;
- tess->mesh = NULL;
-
- tess->polygonData= data;
-}
-
-
-void GLAPIENTRY
-gluTessBeginContour( GLUtesselator *tess )
-{
- RequireState( tess, T_IN_POLYGON );
-
- tess->state = T_IN_CONTOUR;
- tess->lastEdge = NULL;
- if( tess->cacheCount > 0 ) {
- /* Just set a flag so we don't get confused by empty contours
- * -- these can be generated accidentally with the obsolete
- * NextContour() interface.
- */
- tess->emptyCache = TRUE;
- }
-}
-
-
-void GLAPIENTRY
-gluTessEndContour( GLUtesselator *tess )
-{
- RequireState( tess, T_IN_CONTOUR );
- tess->state = T_IN_POLYGON;
-}
-
-void GLAPIENTRY
-gluTessEndPolygon( GLUtesselator *tess )
-{
- GLUmesh *mesh;
-
- if (setjmp(tess->env) != 0) {
- /* come back here if out of memory */
- CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY );
- return;
- }
-
- RequireState( tess, T_IN_POLYGON );
- tess->state = T_DORMANT;
-
- if( tess->mesh == NULL ) {
- if( ! tess->flagBoundary && tess->callMesh == &noMesh ) {
-
- /* Try some special code to make the easy cases go quickly
- * (eg. convex polygons). This code does NOT handle multiple contours,
- * intersections, edge flags, and of course it does not generate
- * an explicit mesh either.
- */
- if( __gl_renderCache( tess )) {
- tess->polygonData= NULL;
- return;
- }
- }
- if ( !EmptyCache( tess ) ) longjmp(tess->env,1); /* could've used a label*/
- }
-
- /* Determine the polygon normal and project vertices onto the plane
- * of the polygon.
- */
- __gl_projectPolygon( tess );
-
- /* __gl_computeInterior( tess ) computes the planar arrangement specified
- * by the given contours, and further subdivides this arrangement
- * into regions. Each region is marked "inside" if it belongs
- * to the polygon, according to the rule given by tess->windingRule.
- * Each interior region is guaranteed be monotone.
- */
- if ( !__gl_computeInterior( tess ) ) {
- longjmp(tess->env,1); /* could've used a label */
- }
-
- mesh = tess->mesh;
- if( ! tess->fatalError ) {
- int rc = 1;
-
- /* If the user wants only the boundary contours, we throw away all edges
- * except those which separate the interior from the exterior.
- * Otherwise we tessellate all the regions marked "inside".
- */
- if( tess->boundaryOnly ) {
- rc = __gl_meshSetWindingNumber( mesh, 1, TRUE );
- } else {
- rc = __gl_meshTessellateInterior( mesh );
- }
- if (rc == 0) longjmp(tess->env,1); /* could've used a label */
-
- __gl_meshCheckMesh( mesh );
-
- if( tess->callBegin != &noBegin || tess->callEnd != &noEnd
- || tess->callVertex != &noVertex || tess->callEdgeFlag != &noEdgeFlag
- || tess->callBeginData != &__gl_noBeginData
- || tess->callEndData != &__gl_noEndData
- || tess->callVertexData != &__gl_noVertexData
- || tess->callEdgeFlagData != &__gl_noEdgeFlagData )
- {
- if( tess->boundaryOnly ) {
- __gl_renderBoundary( tess, mesh ); /* output boundary contours */
- } else {
- __gl_renderMesh( tess, mesh ); /* output strips and fans */
- }
- }
- if( tess->callMesh != &noMesh ) {
-
- /* Throw away the exterior faces, so that all faces are interior.
- * This way the user doesn't have to check the "inside" flag,
- * and we don't need to even reveal its existence. It also leaves
- * the freedom for an implementation to not generate the exterior
- * faces in the first place.
- */
- __gl_meshDiscardExterior( mesh );
- (*tess->callMesh)( mesh ); /* user wants the mesh itself */
- tess->mesh = NULL;
- tess->polygonData= NULL;
+ case GLU_TESS_BEGIN_DATA:
+ tess->callBeginData = (fn == NULL) ?
+ &__gl_noBeginData :
+ (void (GLAPIENTRY *)(GLenum, void *)) fn;
return;
- }
- }
- __gl_meshDeleteMesh( mesh );
- tess->polygonData= NULL;
- tess->mesh = NULL;
+ case GLU_TESS_EDGE_FLAG:
+ tess->callEdgeFlag = (fn == NULL) ? &noEdgeFlag :
+ (void (GLAPIENTRY *)(GLboolean)) fn;
+ /* If the client wants boundary edges to be flagged,
+ * we render everything as separate triangles (no strips or fans).
+ */
+ tess->flagBoundary = (fn != NULL);
+ return;
+ case GLU_TESS_EDGE_FLAG_DATA:
+ tess->callEdgeFlagData = (fn == NULL) ?
+ &__gl_noEdgeFlagData :
+ (void (GLAPIENTRY *)(GLboolean, void *)) fn;
+ /* If the client wants boundary edges to be flagged,
+ * we render everything as separate triangles (no strips or fans).
+ */
+ tess->flagBoundary = (fn != NULL);
+ return;
+ case GLU_TESS_VERTEX:
+ tess->callVertex = (fn == NULL) ? &noVertex :
+ (void (GLAPIENTRY *)(void *)) fn;
+ return;
+ case GLU_TESS_VERTEX_DATA:
+ tess->callVertexData = (fn == NULL) ?
+ &__gl_noVertexData :
+ (void (GLAPIENTRY *)(void *, void *)) fn;
+ return;
+ case GLU_TESS_END:
+ tess->callEnd = (fn == NULL) ? &noEnd : (void (GLAPIENTRY *)(void)) fn;
+ return;
+ case GLU_TESS_END_DATA:
+ tess->callEndData = (fn == NULL) ? &__gl_noEndData :
+ (void (GLAPIENTRY *)(void *)) fn;
+ return;
+ case GLU_TESS_ERROR:
+ tess->callError = (fn == NULL) ? &noError : (void (GLAPIENTRY *)(GLenum)) fn;
+ return;
+ case GLU_TESS_ERROR_DATA:
+ tess->callErrorData = (fn == NULL) ?
+ &__gl_noErrorData :
+ (void (GLAPIENTRY *)(GLenum, void *)) fn;
+ return;
+ case GLU_TESS_COMBINE:
+ tess->callCombine =
+ (fn == NULL) ? &noCombine :
+ (void (GLAPIENTRY *)(GLdouble[3], void *[4], GLfloat[4], void **)) fn;
+ return;
+ case GLU_TESS_COMBINE_DATA:
+ tess->callCombineData = (fn == NULL) ? &__gl_noCombineData :
+ (void (GLAPIENTRY *)(GLdouble[3],
+ void *[4],
+ GLfloat[4],
+ void **,
+ void *)) fn;
+ return;
+ case GLU_TESS_MESH:
+ tess->callMesh = (fn == NULL) ? &noMesh : (void (GLAPIENTRY *)(GLUmesh *)) fn;
+ return;
+ default:
+ CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM);
+ return;
+ }
}
+static int AddVertex(GLUtesselator *tess, GLdouble coords[3], void *data)
+{
+ GLUhalfEdge *e;
+
+ e = tess->lastEdge;
+ if (e == NULL) {
+ /* Make a self-loop (one vertex, one edge). */
+
+ e = __gl_meshMakeEdge(tess->mesh);
+ if (e == NULL)
+ return 0;
+ if (!__gl_meshSplice(e, e->Sym))
+ return 0;
+ }
+ else {
+ /* Create a new vertex and edge which immediately follow e
+ * in the ordering around the left face.
+ */
+ if (__gl_meshSplitEdge(e) == NULL)
+ return 0;
+ e = e->Lnext;
+ }
+
+ /* The new vertex is now e->Org. */
+ e->Org->data = data;
+ e->Org->coords[0] = coords[0];
+ e->Org->coords[1] = coords[1];
+ e->Org->coords[2] = coords[2];
+
+ /* The winding of an edge says how the winding number changes as we
+ * cross from the edge''s right face to its left face. We add the
+ * vertices in such an order that a CCW contour will add +1 to
+ * the winding number of the region inside the contour.
+ */
+ e->winding = 1;
+ e->Sym->winding = -1;
+
+ tess->lastEdge = e;
+
+ return 1;
+}
+
+static void CacheVertex(GLUtesselator *tess, GLdouble coords[3], void *data)
+{
+ CachedVertex *v = &tess->cache[tess->cacheCount];
+
+ v->data = data;
+ v->coords[0] = coords[0];
+ v->coords[1] = coords[1];
+ v->coords[2] = coords[2];
+ ++tess->cacheCount;
+}
+
+static int EmptyCache(GLUtesselator *tess)
+{
+ CachedVertex *v = tess->cache;
+ CachedVertex *vLast;
+
+ tess->mesh = __gl_meshNewMesh();
+ if (tess->mesh == NULL)
+ return 0;
+
+ for (vLast = v + tess->cacheCount; v < vLast; ++v) {
+ if (!AddVertex(tess, v->coords, v->data))
+ return 0;
+ }
+ tess->cacheCount = 0;
+ tess->emptyCache = FALSE;
+
+ return 1;
+}
+
+void GLAPIENTRY
+gluTessVertex(GLUtesselator *tess, GLdouble coords[3], void *data)
+{
+ int i, tooLarge = FALSE;
+ GLdouble x, clamped[3];
+
+ RequireState( tess, T_IN_CONTOUR);
+
+ if (tess->emptyCache) {
+ if (!EmptyCache(tess)) {
+ CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY);
+ return;
+ }
+ tess->lastEdge = NULL;
+ }
+ for (i = 0; i < 3; ++i) {
+ x = coords[i];
+ if (x < -GLU_TESS_MAX_COORD) {
+ x = -GLU_TESS_MAX_COORD;
+ tooLarge = TRUE;
+ }
+ if (x > GLU_TESS_MAX_COORD) {
+ x = GLU_TESS_MAX_COORD;
+ tooLarge = TRUE;
+ }
+ clamped[i] = x;
+ }
+ if (tooLarge) {
+ CALL_ERROR_OR_ERROR_DATA( GLU_TESS_COORD_TOO_LARGE);
+ }
+
+ if (tess->mesh == NULL) {
+ if (tess->cacheCount < TESS_MAX_CACHE) {
+ CacheVertex(tess, clamped, data);
+ return;
+ }
+ if (!EmptyCache(tess)) {
+ CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY);
+ return;
+ }
+ }
+ if (!AddVertex(tess, clamped, data)) {
+ CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY);
+ }
+}
+
+void GLAPIENTRY
+gluTessBeginPolygon(GLUtesselator *tess, void *data)
+{
+ RequireState( tess, T_DORMANT);
+
+ tess->state = T_IN_POLYGON;
+ tess->cacheCount = 0;
+ tess->emptyCache = FALSE;
+ tess->mesh = NULL;
+
+ tess->polygonData = data;
+}
+
+void GLAPIENTRY
+gluTessBeginContour(GLUtesselator *tess)
+{
+ RequireState( tess, T_IN_POLYGON);
+
+ tess->state = T_IN_CONTOUR;
+ tess->lastEdge = NULL;
+ if (tess->cacheCount > 0) {
+ /* Just set a flag so we don't get confused by empty contours
+ * -- these can be generated accidentally with the obsolete
+ * NextContour() interface.
+ */
+ tess->emptyCache = TRUE;
+ }
+}
+
+void GLAPIENTRY
+gluTessEndContour(GLUtesselator *tess)
+{
+ RequireState( tess, T_IN_CONTOUR);
+ tess->state = T_IN_POLYGON;
+}
+
+void GLAPIENTRY
+gluTessEndPolygon(GLUtesselator *tess)
+{
+ GLUmesh *mesh;
+
+ if (setjmp(tess->env) != 0) {
+ /* come back here if out of memory */
+ CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY);
+ return;
+ }
+
+ RequireState( tess, T_IN_POLYGON);
+ tess->state = T_DORMANT;
+
+ if (tess->mesh == NULL) {
+ if (!tess->flagBoundary && tess->callMesh == &noMesh) {
+
+ /* Try some special code to make the easy cases go quickly
+ * (eg. convex polygons). This code does NOT handle multiple contours,
+ * intersections, edge flags, and of course it does not generate
+ * an explicit mesh either.
+ */
+ if (__gl_renderCache(tess)) {
+ tess->polygonData = NULL;
+ return;
+ }
+ }
+ if (!EmptyCache(tess))
+ longjmp(tess->env, 1); /* could've used a label*/
+ }
+
+ /* Determine the polygon normal and project vertices onto the plane
+ * of the polygon.
+ */
+ __gl_projectPolygon(tess);
+
+ /* __gl_computeInterior( tess ) computes the planar arrangement specified
+ * by the given contours, and further subdivides this arrangement
+ * into regions. Each region is marked "inside" if it belongs
+ * to the polygon, according to the rule given by tess->windingRule.
+ * Each interior region is guaranteed be monotone.
+ */
+ if (!__gl_computeInterior(tess)) {
+ longjmp(tess->env, 1); /* could've used a label */
+ }
+
+ mesh = tess->mesh;
+ if (!tess->fatalError) {
+ int rc = 1;
+
+ /* If the user wants only the boundary contours, we throw away all edges
+ * except those which separate the interior from the exterior.
+ * Otherwise we tessellate all the regions marked "inside".
+ */
+ if (tess->boundaryOnly) {
+ rc = __gl_meshSetWindingNumber(mesh, 1, TRUE);
+ }
+ else {
+ rc = __gl_meshTessellateInterior(mesh);
+ }
+ if (rc == 0)
+ longjmp(tess->env, 1); /* could've used a label */
+
+ __gl_meshCheckMesh(mesh);
+
+ if (tess->callBegin != &noBegin || tess->callEnd != &noEnd
+ || tess->callVertex != &noVertex || tess->callEdgeFlag != &noEdgeFlag
+ || tess->callBeginData != &__gl_noBeginData
+ || tess->callEndData != &__gl_noEndData
+ || tess->callVertexData != &__gl_noVertexData
+ || tess->callEdgeFlagData != &__gl_noEdgeFlagData)
+ {
+ if (tess->boundaryOnly) {
+ __gl_renderBoundary(tess, mesh); /* output boundary contours */
+ }
+ else {
+ __gl_renderMesh(tess, mesh); /* output strips and fans */
+ }
+ }
+ if (tess->callMesh != &noMesh) {
+
+ /* Throw away the exterior faces, so that all faces are interior.
+ * This way the user doesn't have to check the "inside" flag,
+ * and we don't need to even reveal its existence. It also leaves
+ * the freedom for an implementation to not generate the exterior
+ * faces in the first place.
+ */
+ __gl_meshDiscardExterior(mesh);
+ (*tess->callMesh)(mesh); /* user wants the mesh itself */
+ tess->mesh = NULL;
+ tess->polygonData = NULL;
+ return;
+ }
+ }
+ __gl_meshDeleteMesh(mesh);
+ tess->polygonData = NULL;
+ tess->mesh = NULL;
+}
/*XXXblythe unused function*/
#if 0
void GLAPIENTRY
gluDeleteMesh( GLUmesh *mesh )
{
- __gl_meshDeleteMesh( mesh );
+ __gl_meshDeleteMesh( mesh );
}
#endif
-
-
/*******************************************************/
/* Obsolete calls -- for backward compatibility */
void GLAPIENTRY
-gluBeginPolygon( GLUtesselator *tess )
+gluBeginPolygon(GLUtesselator *tess)
{
- gluTessBeginPolygon( tess, NULL );
- gluTessBeginContour( tess );
+ gluTessBeginPolygon(tess, NULL);
+ gluTessBeginContour(tess);
}
-
/*ARGSUSED*/
void GLAPIENTRY
-gluNextContour( GLUtesselator *tess, GLenum type )
+gluNextContour(GLUtesselator *tess, GLenum type)
{
- gluTessEndContour( tess );
- gluTessBeginContour( tess );
+ gluTessEndContour(tess);
+ gluTessBeginContour(tess);
}
-
void GLAPIENTRY
-gluEndPolygon( GLUtesselator *tess )
+gluEndPolygon(GLUtesselator *tess)
{
- gluTessEndContour( tess );
- gluTessEndPolygon( tess );
+ gluTessEndContour(tess);
+ gluTessEndPolygon(tess);
}
diff --git a/vtm/jni/tessellate/tessellate.c b/vtm/jni/tessellate/tessellate.c
index b4010401..7bedfcc4 100644
--- a/vtm/jni/tessellate/tessellate.c
+++ b/vtm/jni/tessellate/tessellate.c
@@ -1,44 +1,12 @@
-#include
+
#include
#include "glu.h"
#include "tess.h"
#include
#include
-#include
-#ifdef __ANDROID__
-#include
-#endif
+#include "tessellate.h"
-//#ifndef uintptr_t
-//typedef unsigned long uintptr_t;
-//#endif
-
-/******************************************************************************/
-
-typedef struct Triangle {
- int v[3];
- struct Triangle *prev;
-} Triangle;
-
-typedef struct Vertex {
- double pt[3];
- int index;
- struct Vertex *prev;
-} Vertex;
-
-typedef struct TessContext {
- Triangle *latest_t;
- int n_tris;
-
- Vertex *v_prev;
- Vertex *v_prevprev;
- Vertex *latest_v;
- GLenum current_mode;
- int odd_even_strip;
-
- void (*vertex_cb)(Vertex *, struct TessContext *);
-} TessContext;
void skip_vertex(Vertex *v, TessContext *ctx);
@@ -212,8 +180,37 @@ void write_output(TessContext *ctx, float **coordinates_out, int **tris_out, int
}
}
+void write_outputD(TessContext *ctx, double **coordinates_out, int **tris_out, int *vc, int *tc)
+{
+ int n_verts = 1 + ctx->latest_v->index;
+ *vc = n_verts;
+ int n_tris_copy = ctx->n_tris;
+ *tc = ctx->n_tris;
+ *coordinates_out = malloc(n_verts * sizeof(double) * 2);
+ *tris_out = (ctx->n_tris ? malloc(ctx->n_tris * sizeof(int) * 3) : NULL);
+
+ while (ctx->latest_v) {
+ (*coordinates_out)[2 * ctx->latest_v->index] = ctx->latest_v->pt[0];
+ (*coordinates_out)[2 * ctx->latest_v->index + 1] = ctx->latest_v->pt[1];
+ Vertex *prev = ctx->latest_v->prev;
+ free(ctx->latest_v);
+ ctx->latest_v = prev;
+ }
+
+ while (ctx->latest_t) {
+ (*tris_out)[3 * (n_tris_copy - 1)] = ctx->latest_t->v[0];
+ (*tris_out)[3 * (n_tris_copy - 1) + 1] = ctx->latest_t->v[1];
+ (*tris_out)[3 * (n_tris_copy - 1) + 2] = ctx->latest_t->v[2];
+ Triangle *prev = ctx->latest_t->prev;
+ free(ctx->latest_t);
+ ctx->latest_t = prev;
+ n_tris_copy--;
+ }
+}
TessContext *tessellate(
+ float **verts,
int *nverts,
+ int **tris,
int *ntris,
const float **contoursbegin,
const float **contoursend)
@@ -231,6 +228,7 @@ TessContext *tessellate(
gluTessCallback(tess, GLU_TESS_COMBINE_DATA, (GLvoid (*)()) &combine);
gluTessBeginPolygon(tess, ctx);
+
do {
contourbegin = *contoursbegin++;
contourend = *contoursbegin;
@@ -244,16 +242,20 @@ TessContext *tessellate(
} while (contoursbegin != (contoursend - 1));
gluTessEndPolygon(tess);
- //write_output(ctx, verts, tris, nverts, ntris);
- //destroy_tess_context(ctx);
-
+#ifdef TEST
+ write_output(ctx, verts, tris, nverts, ntris);
+ destroy_tess_context(ctx);
+#else
gluDeleteTess(tess);
+#endif
return ctx;
}
TessContext *tessellateD(
+ double **verts,
int *nverts,
+ int **tris,
int *ntris,
const double **contoursbegin,
const double **contoursend)
@@ -266,231 +268,40 @@ TessContext *tessellateD(
tess = gluNewTess();
ctx = new_tess_context();
+
+ //tess->normal[2] = -1;
+
gluTessCallback(tess, GLU_TESS_VERTEX_DATA, (GLvoid (*)()) &vertex);
gluTessCallback(tess, GLU_TESS_BEGIN_DATA, (GLvoid (*)()) &begin);
gluTessCallback(tess, GLU_TESS_COMBINE_DATA, (GLvoid (*)()) &combine);
gluTessBeginPolygon(tess, ctx);
+
do {
+ //printf("begin contour\n");
contourbegin = *contoursbegin++;
contourend = *contoursbegin;
+
gluTessBeginContour(tess);
+
while (contourbegin != contourend) {
+ //printf("add point %f %f \n", contourbegin[0], contourbegin[1]);
current_vertex = new_vertex(ctx, contourbegin[0], contourbegin[1]);
contourbegin += 2;
gluTessVertex(tess, current_vertex->pt, current_vertex);
}
gluTessEndContour(tess);
} while (contoursbegin != (contoursend - 1));
+
gluTessEndPolygon(tess);
- //write_output(ctx, verts, tris, nverts, ntris);
- //destroy_tess_context(ctx);
-
+#ifdef TEST
+ write_outputD(ctx, verts, tris, nverts, ntris);
+ destroy_tess_context(ctx);
+#else
gluDeleteTess(tess);
+#endif
return ctx;
}
-#ifdef __ANDROID__
-#define printf(...) __android_log_print(ANDROID_LOG_DEBUG, "Tesselate", __VA_ARGS__)
-#endif
-#define CAST_CTX(x) (TessContext *)(uintptr_t) x
-
-void Java_org_oscim_renderer_sublayers_MeshLayer_tessFinish(JNIEnv *env, jclass c,
- jlong ptr_context) {
-
- TessContext *ctx = CAST_CTX(ptr_context);
-
- while (ctx->latest_v) {
- Vertex *prev = ctx->latest_v->prev;
- free(ctx->latest_v);
- ctx->latest_v = prev;
- }
-
- while (ctx->latest_t) {
- Triangle *prev = ctx->latest_t->prev;
- free(ctx->latest_t);
- ctx->latest_t = prev;
- }
-
- destroy_tess_context(ctx);
-}
-
-jint Java_org_oscim_renderer_sublayers_MeshLayer_tessGetCoordinates(JNIEnv *env, jclass c,
- jlong ptr_context, jshortArray obj_coords, jfloat scale) {
-
- TessContext *ctx = CAST_CTX(ptr_context);
-
- int length = (*env)->GetArrayLength(env, obj_coords);
-
- jshort* coords = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_coords, 0);
- if (coords == NULL) {
- return 0;
- }
-
- //int n_verts = 1 + ctx->latest_v->index;
- //int n_tris_copy = ctx->n_tris;
-
- int cnt = 0;
- for (; ctx->latest_v && cnt < length; cnt += 2) {
- coords[cnt + 0] = (ctx->latest_v->pt[0] * scale) + 0.5f;
- coords[cnt + 1] = (ctx->latest_v->pt[1] * scale) + 0.5f;
- Vertex *prev = ctx->latest_v->prev;
- free(ctx->latest_v);
- ctx->latest_v = prev;
- }
- (*env)->ReleasePrimitiveArrayCritical(env, obj_coords, coords, JNI_ABORT);
-
- return cnt;
-}
-
-jint Java_org_oscim_renderer_sublayers_MeshLayer_tessGetCoordinatesD(JNIEnv *env, jclass c,
- jlong ptr_context, jdoubleArray obj_coords) {
-
- TessContext *ctx = CAST_CTX(ptr_context);
-
- int length = (*env)->GetArrayLength(env, obj_coords);
-
- jdouble* coords = (jdouble*) (*env)->GetPrimitiveArrayCritical(env, obj_coords, 0);
- if (coords == NULL) {
- return 0;
- }
-
- //int n_verts = 1 + ctx->latest_v->index;
- //int n_tris_copy = ctx->n_tris;
-
- int cnt = 0;
- for (; ctx->latest_v && cnt < length; cnt += 2) {
- coords[cnt + 0] = ctx->latest_v->pt[0];
- coords[cnt + 1] = ctx->latest_v->pt[1];
- Vertex *prev = ctx->latest_v->prev;
- free(ctx->latest_v);
- ctx->latest_v = prev;
- }
- (*env)->ReleasePrimitiveArrayCritical(env, obj_coords, coords, JNI_ABORT);
-
- return cnt;
-}
-jint Java_org_oscim_renderer_sublayers_MeshLayer_tessGetIndices(JNIEnv *env, jclass c,
- jlong ptr_context, jshortArray obj_indices) {
-
- TessContext *ctx = CAST_CTX(ptr_context);
-
- int length = (*env)->GetArrayLength(env, obj_indices);
-
- jshort* tris = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_indices, 0);
- if (tris == NULL) {
- return 0;
- }
-
- int n_tris_copy = ctx->n_tris;
-
- int cnt = 0;
-
- for (; ctx->latest_t && cnt < length; cnt += 3) {
- tris[cnt + 0] = ctx->latest_t->v[0];
- tris[cnt + 1] = ctx->latest_t->v[1];
- tris[cnt + 2] = ctx->latest_t->v[2];
- Triangle *prev = ctx->latest_t->prev;
-
- free(ctx->latest_t);
- ctx->latest_t = prev;
- n_tris_copy--;
- }
-
- ctx->n_tris = n_tris_copy;
-
- (*env)->ReleasePrimitiveArrayCritical(env, obj_indices, tris, JNI_ABORT);
-
- return cnt;
-}
-
-jlong Java_org_oscim_renderer_sublayers_MeshLayer_tessellate(JNIEnv *env, jclass c,
- jfloatArray obj_points, jint pos,
- jshortArray obj_index, jint ipos,
- jint num_rings) { //, jintArray obj_out) {
-
- jboolean isCopy;
-
- printf("add %d %d %d\n", pos, ipos, num_rings);
-
- float* orig_points = (float*) (*env)->GetPrimitiveArrayCritical(env, obj_points, &isCopy);
- if (orig_points == NULL)
- return 0;
-
- const float *points = orig_points + pos;
-
- jshort* orig_indices = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_index, &isCopy);
- if (orig_indices == NULL) {
- (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
- return 0;
- }
-
- jshort* indices = orig_indices + ipos;
-
- const float **rings = malloc(sizeof(float*) * (num_rings + 1));
- int offset = 0;
- for (int i = 0; i < num_rings; i++) {
- rings[i] = points + offset;
- offset += indices[i];
- }
- rings[num_rings] = points + offset;
-
- int nverts, ntris;
-
- TessContext *ctx = tessellate(&nverts, &ntris,
- rings, rings + (num_rings + 1));
-
- free(rings);
-
- (*env)->ReleasePrimitiveArrayCritical(env, obj_index, orig_indices, JNI_ABORT);
- (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
-
- return (long) ctx;
-}
-
-
-jlong Java_org_oscim_renderer_sublayers_MeshLayer_tessellateD(JNIEnv *env, jclass c,
- jdoubleArray obj_points, jint pos,
- jshortArray obj_index, jint ipos,
- jint num_rings) { //, jintArray obj_out) {
-
- jboolean isCopy;
-
- printf("add %d %d %d\n", pos, ipos, num_rings);
-
- double* orig_points = (double*) (*env)->GetPrimitiveArrayCritical(env, obj_points, &isCopy);
- if (orig_points == NULL)
- return 0;
-
- const double *points = orig_points + pos;
-
- jshort* orig_indices = (jshort*) (*env)->GetPrimitiveArrayCritical(env, obj_index, &isCopy);
- if (orig_indices == NULL) {
- (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
- return 0;
- }
-
- jshort* indices = orig_indices + ipos;
-
- const double **rings = malloc(sizeof(double*) * (num_rings + 1));
- int offset = 0;
- for (int i = 0; i < num_rings; i++) {
- rings[i] = points + offset;
- offset += indices[i];
- }
- rings[num_rings] = points + offset;
-
- int nverts, ntris;
-
- TessContext *ctx = tessellateD(&nverts, &ntris,
- rings, rings + (num_rings + 1));
-
- free(rings);
-
- (*env)->ReleasePrimitiveArrayCritical(env, obj_index, orig_indices, JNI_ABORT);
- (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
-
- return (long) ctx;
-}
diff --git a/vtm/jni/tessellate/tessellate.h b/vtm/jni/tessellate/tessellate.h
index e1ca013d..0a2d5148 100644
--- a/vtm/jni/tessellate/tessellate.h
+++ b/vtm/jni/tessellate/tessellate.h
@@ -1,13 +1,41 @@
+#include "glu.h"
+
+typedef struct Triangle {
+ int v[3];
+ struct Triangle *prev;
+} Triangle;
+
typedef struct Vertex {
double pt[3];
int index;
struct Vertex *prev;
} Vertex;
-//void tessellate
-// (double **verts,
-// int *nverts,
-// int **tris,
-// int *ntris,
-// const float **contoursbegin,
-// const float **contoursend);
+typedef struct TessContext {
+ Triangle *latest_t;
+ int n_tris;
+
+ Vertex *v_prev;
+ Vertex *v_prevprev;
+ Vertex *latest_v;
+ GLenum current_mode;
+ int odd_even_strip;
+
+ void (*vertex_cb)(Vertex *, struct TessContext *);
+} TessContext;
+
+TessContext *tessellateD
+ (double **verts,
+ int *nverts,
+ int **tris,
+ int *ntris,
+ const double **contoursbegin,
+ const double **contoursend);
+
+TessContext *tessellate
+ (float **verts,
+ int *nverts,
+ int **tris,
+ int *ntris,
+ const float **contoursbegin,
+ const float **contoursend);
diff --git a/vtm/jni/triangle/README b/vtm/jni/triangle/README
deleted file mode 100644
index b33ea009..00000000
--- a/vtm/jni/triangle/README
+++ /dev/null
@@ -1,198 +0,0 @@
-Triangle
-A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
-Version 1.6
-
-Show Me
-A Display Program for Meshes and More.
-Version 1.6
-
-Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk
-2360 Woolsey #H
-Berkeley, California 94705-1927
-Please send bugs and comments to jrs@cs.berkeley.edu
-
-Created as part of the Quake project (tools for earthquake simulation).
-Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.
-There is no warranty whatsoever. Use at your own risk.
-
-
-Triangle generates exact Delaunay triangulations, constrained Delaunay
-triangulations, conforming Delaunay triangulations, Voronoi diagrams, and
-high-quality triangular meshes. The latter can be generated with no small
-or large angles, and are thus suitable for finite element analysis.
-Show Me graphically displays the contents of the geometric files used by
-Triangle. Show Me can also write images in PostScript form.
-
-Information on the algorithms used by Triangle, including complete
-references, can be found in the comments at the beginning of the triangle.c
-source file. Another listing of these references, with PostScript copies
-of some of the papers, is available from the Web page
-
- http://www.cs.cmu.edu/~quake/triangle.research.html
-
-------------------------------------------------------------------------------
-
-These programs may be freely redistributed under the condition that the
-copyright notices (including the copy of this notice in the code comments
-and the copyright notice printed when the `-h' switch is selected) are
-not removed, and no compensation is received. Private, research, and
-institutional use is free. You may distribute modified versions of this
-code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT
-IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH
-SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND
-CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as
-part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT
-WITH THE AUTHOR. (If you are not directly supplying this code to a
-customer, and you are instead telling them how they can obtain it for
-free, then you are not required to make any arrangement with me.)
-
-------------------------------------------------------------------------------
-
-The files included in this distribution are:
-
- README The file you're reading now.
- triangle.c Complete C source code for Triangle.
- showme.c Complete C source code for Show Me.
- triangle.h Include file for calling Triangle from another program.
- tricall.c Sample program that calls Triangle.
- makefile Makefile for compiling Triangle and Show Me.
- A.poly A sample input file.
-
-Each of Triangle and Show Me is a single portable C file. The easiest way
-to compile them is to edit and use the included makefile. Before
-compiling, read the makefile, which describes your options, and edit it
-accordingly. You should specify:
-
- The source and binary directories.
-
- The C compiler and level of optimization.
-
- The "correct" directories for include files (especially X include files),
- if necessary.
-
- Do you want single precision or double? (The default is double.) Do you
- want to leave out some of Triangle's features to reduce the size of the
- executable file? Investigate the SINGLE, REDUCED, and CDT_ONLY symbols.
-
- If yours is not a Unix system, define the NO_TIMER symbol to remove the
- Unix-specific timing code. Also, don't try to compile Show Me; it only
- works with X Windows.
-
- If you are compiling on an Intel x86 CPU and using gcc w/Linux or
- Microsoft C, be sure to define the LINUX or CPU86 (for Microsoft) symbol
- during compilation so that the exact arithmetic works right.
-
-Once you've done this, type "make" to compile the programs. Alternatively,
-the files are usually easy to compile without a makefile:
-
- cc -O -o triangle triangle.c -lm
- cc -O -o showme showme.c -lX11
-
-On some systems, the C compiler won't be able to find the X include files
-or libraries, and you'll need to specify an include path or library path:
-
- cc -O -I/usr/local/include -o showme showme.c -L/usr/local/lib -lX11
-
-Some processors, including Intel x86 family and possibly Motorola 68xxx
-family chips, are IEEE conformant but have extended length internal
-floating-point registers that may defeat Triangle's exact arithmetic
-routines by failing to cause enough roundoff error! Typically, there is a
-way to set these internal registers so that they are rounded off to IEEE
-single or double precision format. I believe (but I'm not certain) that
-Triangle has the right incantations for x86 chips, if you have gcc running
-under Linux (define the LINUX compiler symbol) or Microsoft C (define the
-CPU86 compiler symbol).
-
-If you have a different processor or operating system, or if I got the
-incantations wrong, you should check your C compiler or system manuals to
-find out how to configure these internal registers to the precision you are
-using. Otherwise, the exact arithmetic routines won't be exact at all.
-See http://www.cs.cmu.edu/~quake/robust.pc.html for details. Triangle's
-exact arithmetic hasn't a hope of working on machines like the Cray C90 or
-Y-MP, which are not IEEE conformant and have inaccurate rounding.
-
-Triangle and Show Me have both text and HTML documentation. The latter is
-illustrated. Find it on the Web at
-
- http://www.cs.cmu.edu/~quake/triangle.html
- http://www.cs.cmu.edu/~quake/showme.html
-
-Complete text instructions are printed by invoking each program with the
-`-h' switch:
-
- triangle -h
- showme -h
-
-The instructions are long; you'll probably want to pipe the output to
-`more' or `lpr' or redirect it to a file.
-
-Both programs give a short list of command line options if they are invoked
-without arguments (that is, just type `triangle' or `showme').
-
-Try out Triangle on the enclosed sample file, A.poly:
-
- triangle -p A
- showme A.poly &
-
-Triangle will read the Planar Straight Line Graph defined by A.poly, and
-write its constrained Delaunay triangulation to A.1.node and A.1.ele.
-Show Me will display the figure defined by A.poly. There are two buttons
-marked "ele" in the Show Me window; click on the top one. This will cause
-Show Me to load and display the triangulation.
-
-For contrast, try running
-
- triangle -pq A
-
-Now, click on the same "ele" button. A new triangulation will be loaded;
-this one having no angles smaller than 20 degrees.
-
-To see a Voronoi diagram, try this:
-
- cp A.poly A.node
- triangle -v A
-
-Click the "ele" button again. You will see the Delaunay triangulation of
-the points in A.poly, without the segments. Now click the top "voro" button.
-You will see the Voronoi diagram corresponding to that Delaunay triangulation.
-Click the "Reset" button to see the full extent of the diagram.
-
-------------------------------------------------------------------------------
-
-If you wish to call Triangle from another program, instructions for doing
-so are contained in the file `triangle.h' (but read Triangle's regular
-instructions first!). Also look at `tricall.c', which provides an example
-of how to call Triangle.
-
-Type "make trilibrary" to create triangle.o, a callable object file.
-Alternatively, the object file is usually easy to compile without a
-makefile:
-
- cc -DTRILIBRARY -O -c triangle.c
-
-Type "make distclean" to remove all the object and executable files created
-by make.
-
-------------------------------------------------------------------------------
-
-If you use Triangle, and especially if you use it to accomplish real work,
-I would like very much to hear from you. A short letter or email (to
-jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot to me.
-The more people I know are using this program, the more easily I can
-justify spending time on improvements and on the three-dimensional
-successor to Triangle, which in turn will benefit you. Also, I can put you
-on a list to receive email whenever a new version of Triangle is available.
-
-If you use a mesh generated by Triangle or plotted by Show Me in a
-publication, please include an acknowledgment as well. And please spell
-Triangle with a capital `T'! If you want to include a citation, use
-`Jonathan Richard Shewchuk, ``Triangle: Engineering a 2D Quality Mesh
-Generator and Delaunay Triangulator,'' in Applied Computational Geometry:
-Towards Geometric Engineering (Ming C. Lin and Dinesh Manocha, editors),
-volume 1148 of Lecture Notes in Computer Science, pages 203-222,
-Springer-Verlag, Berlin, May 1996. (From the First ACM Workshop on Applied
-Computational Geometry.)'
-
-
-Jonathan Richard Shewchuk
-July 27, 2005
diff --git a/vtm/jni/triangle/TriangleJni.c b/vtm/jni/triangle/TriangleJni.c
deleted file mode 100644
index 52c18007..00000000
--- a/vtm/jni/triangle/TriangleJni.c
+++ /dev/null
@@ -1,308 +0,0 @@
-#include
-#include
-#include
-#include
-#include
-#include "triangle.h"
-
-#ifdef __ANDROID__
-#include
-#define printf(...) __android_log_print(ANDROID_LOG_DEBUG, "Triangle", __VA_ARGS__)
-#endif
-
-// from www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
-#if 0
-int pnpoly(int nvert, float *vert, float testx, float testy)
-{
- int i, j, c = 0;
- for (i = 0, j = (nvert-1)*2; i < nvert * 2; j = i++)
- {
- if ( ((vert[i*2+1] > testy) != (vert[j*j+1] > testy)) &&
- (testx < (vert[j*2]-vert[i*2])
- * (testy - vert[i*2+1])
- / (vert[j*2+1]-vert[i*2+1]) + vert[i*2]) )
- c = !c;
- }
- return c;
-}
-
-int compare_dups(const void *a, const void *b) {
- int da = *((const long*) a);
- int db = *((const long*) b);
- return (da > db) - (da < db);
-}
-
-void shiftSegment(TriangleIO *in, int *seg, int pos) {
- int size = (in->numberofsegments - pos - 1) * sizeof(int) * 2;
- printf("shift %d - %d %d\n", size, in->numberofsegments, pos);
- if (size > 0)
- memmove(seg, seg + 2, size);
-
- in->numberofsegments -= 1;
-}
-struct {
- int p1;
- int p2;
-} segment;
-
-#endif
-
-static void printPoly(TriangleIO *in) {
- // print poly format to check with triangle/showme
- printf("%d 2 0 0\n", in->numberofpoints);
- for (int j = 0; j < in->numberofpoints; j++)
- printf("%d %f %f\n", j, in->pointlist[j*2], in->pointlist[j*2+1]);
-
- int *seg = in->segmentlist;
- printf("%d 0\n", in->numberofsegments);
- for (int j = 0; j < in->numberofsegments; j++, seg += 2)
- printf("%d %d %d\n", j, *seg, *(seg+1));
-
- printf("%d 0\n", in->numberofholes);
- for (int j = 0; j < in->numberofholes; j++) {
- printf("%d %f %f\n", j, in->holelist[j*2], in->holelist[j*2+1]);
- }
-}
-
-jint Java_org_oscim_utils_geom_Triangulator_triangulate(JNIEnv *env, jclass c,
- jfloatArray obj_points, jint pos, jint len, jint num_rings, jobject indice_buf, jint offset) {
-
- jshort* indices = (jshort*) (*env)->GetDirectBufferAddress(env, indice_buf);
- jboolean isCopy;
-
- float* orig_points = (float*) (*env)->GetPrimitiveArrayCritical(env, obj_points, &isCopy);
- if (orig_points == NULL)
- return 0;
-
- float *points = orig_points + pos;
-
- TriangleIO in, out;
-
- memset(&in, 0, sizeof(TriangleIO));
-
- in.numberofpoints = len >> 1;
- in.pointlist = (float *) points;
-
- // check if explicitly closed
- if (in.pointlist[0] == in.pointlist[indices[0] - 2]
- && in.pointlist[1] == in.pointlist[indices[0] - 1]) {
- int point = 0;
- for (int i = 0; i < num_rings; i++) {
- // remove last point in ring
- indices[i] -= 2;
- int last = point + (indices[i] >> 1);
-
- if (in.numberofpoints - last > 1)
- memmove(in.pointlist + (last * 2), in.pointlist + ((last + 1) * 2),
- (in.numberofpoints - last - 1) * 2 * sizeof(float));
-
- in.numberofpoints--;
- point = last;
- }
- }
-
- int dups = 0;
-
- float *i_points = points;
- int *skip_list = NULL;
-
- // check for duplicate vertices and keep a list
- // of dups and the first occurence
- for (int i = 0; i < in.numberofpoints - 1; i++) {
- float x = *i_points++;
- float y = *i_points++;
- float *j_points = i_points;
-
- for (int j = i + 1; j < in.numberofpoints; j++, j_points += 2) {
- if ((*j_points == x) && (*(j_points + 1) == y)) {
- skip_list = realloc(skip_list, (dups + 2) * 2 * sizeof(int));
- skip_list[dups * 2 + 0] = j;
- skip_list[dups * 2 + 1] = i;
- dups++;
- }
- }
- }
-
- in.segmentlist = (int *) malloc(in.numberofpoints * 2 * sizeof(int));
- in.numberofsegments = in.numberofpoints;
- in.numberofholes = num_rings - 1;
-
- int *rings = NULL;
- if (in.numberofholes > 0) {
- in.holelist = (double *) malloc(in.numberofholes * 2 * sizeof(double));
- rings = (int*) malloc(num_rings * sizeof(int));
- }
-
- int *seg = in.segmentlist;
- double *hole = in.holelist;
-
- // counter going through all points
- int point;
- // counter going through all rings
- int ring;
-
- // assign all points to segments for each ring
- for (ring = 0, point = 0; ring < num_rings; ring++, point++) {
- int len;
- int num_points = indices[ring] >> 1;
-
- if (rings)
- rings[ring] = num_points;
-
- // add holes: we need a point inside the hole...
- // this is just a heuristic, assuming that two
- // 'parallel' lines have a distance of at least
- // 1 unit. you'll notice when things went wrong
- // when the hole is rendered instead of the poly
- if (ring > 0) {
- int k = point * 2;
-
- float nx = in.pointlist[k++];
- float ny = in.pointlist[k++];
-
- float cx = 0, cy = 0, vx = 0, vy = 0;
-
- // try to find a large enough segment
- for (len = (point + num_points) * 2; k < len;) {
- cx = nx;
- cy = ny;
-
- nx = in.pointlist[k++];
- ny = in.pointlist[k++];
-
- vx = nx - cx;
- vy = ny - cy;
-
- if (vx > 4 || vx < -4 || vy > 4 || vy < -4)
- break;
- }
-
- float a = sqrt(vx * vx + vy * vy);
-
- float ux = -vy / a;
- float uy = vx / a;
-
- double centerx = cx + vx / 2.0 - (ux * 0.1);
- double centery = cy + vy / 2.0 - (uy * 0.1);
-
- *hole++ = centerx;
- *hole++ = centery;
- }
-
- // close ring
- int last = point + (num_points - 1);
- *seg++ = last;
- *seg++ = point;
-
- for (len = point + num_points - 1; point < len; point++) {
- *seg++ = point;
- *seg++ = point + 1;
- }
- }
-
- if (dups) {
- for (int i = 0; i < dups; i++) {
- printf("duplicate points at %d, %d: %f,%f\n",
- skip_list[i*2], skip_list[i*2+1],
- in.pointlist[skip_list[i*2+1]*2],
- in.pointlist[skip_list[i*2+1]*2+1]);
- }
- printPoly(&in);
-
- // replace duplicate positions with first occurence
- for (int i = 0; i < dups; i++) {
- // position of the duplicate vertex
- int pos = skip_list[i * 2] - i;
- // first vertex
- int replacement = skip_list[i * 2 + 1];
-
- seg = in.segmentlist;
- for (int j = 0; j < in.numberofsegments * 2; j++, seg++) {
- if (*seg == pos) {
- printf("%d: %d <- %d", j, pos, replacement);
- *seg = replacement;
- }
- }
- }
- }
-
- memset(&out, 0, sizeof(TriangleIO));
- out.trianglelist = (INDICE*) indices;
-
- // p - use polygon input, for CDT
- // z - zero offset array offsets...
- // P - no poly output
- // N - no node output
- // B - no bound output
- // Q - be quiet!
-
- TriangleOptions opt;
- memset(&opt, 0, sizeof(TriangleOptions));
-
- opt.dwyer = 1;
- opt.steiner = -1;
- opt.order = 1;
- opt.maxarea = -1.0;
-
- opt.poly = 1;
- opt.usesegments = 1;
- opt.nopolywritten = 1;
- opt.nonodewritten = 1;
- opt.nobound = 1;
- opt.quiet = 1;
-
- triangulate(&opt, &in, &out, (TriangleIO *) NULL);
-
- if (in.numberofpoints < out.numberofpoints) {
- // TODO rerun with 'nonodewritten = 0'
- printf( "polygon input is bad! points in:%d out%d\n", in.numberofpoints, out.numberofpoints);
- out.numberoftriangles = 0;
- }
- else if (out.trianglelist)
- {
- // scale to stride and add offset
- short stride = 2;
-
- if (offset < 0)
- offset = 0;
-
- INDICE *tri = out.trianglelist;
-
- for (int n = out.numberoftriangles * 3; n > 0; n--)
- *tri++ = *tri * stride + offset;
-
- // when a ring has an odd number of points one (or rather two)
- // additional vertices will be added. so the following rings
- // needs extra offset...
- int start = offset;
- for (int j = 0, m = in.numberofholes; j < m; j++) {
- start += rings[j] * stride;
-
- // even number of points?
- if (!(rings[j] & 1))
- continue;
-
- tri = out.trianglelist;
- int n = out.numberoftriangles * 3;
-
- for (; n-- > 0; tri++)
- if (*tri >= start)
- *tri += stride;
-
- start += stride;
- }
- }
- else
- {
- printf( "triangle failed %d\n", out.numberofpoints);
- }
-
- (*env)->ReleasePrimitiveArrayCritical(env, obj_points, orig_points, JNI_ABORT);
-
- free(in.segmentlist);
- free(in.holelist);
- free(rings);
- free(skip_list);
-
- return out.numberoftriangles;
-}
diff --git a/vtm/jni/triangle/triangle.c b/vtm/jni/triangle/triangle.c
deleted file mode 100644
index 760d2ade..00000000
--- a/vtm/jni/triangle/triangle.c
+++ /dev/null
@@ -1,7388 +0,0 @@
-/*****************************************************************************/
-/* */
-/* 888888888 ,o, / 888 */
-/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
-/* 888 888 888 88b 888 888 888 888 888 d888 88b */
-/* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */
-/* 888 888 888 C888 888 888 888 / 888 q888 */
-/* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */
-/* "8oo8D */
-/* */
-/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
-/* (triangle.c) */
-/* */
-/* Version 1.6 */
-/* July 28, 2005 */
-/* */
-/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */
-/* Jonathan Richard Shewchuk */
-/* 2360 Woolsey #H */
-/* Berkeley, California 94705-1927 */
-/* jrs@cs.berkeley.edu */
-/* */
-/* This program may be freely redistributed under the condition that the */
-/* copyright notices (including this entire header and the copyright */
-/* notice printed when the `-h' switch is selected) are not removed, and */
-/* no compensation is received. Private, research, and institutional */
-/* use is free. You may distribute modified versions of this code UNDER */
-/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
-/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
-/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
-/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
-/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
-/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
-/* customer, and you are instead telling them how they can obtain it for */
-/* free, then you are not required to make any arrangement with me.) */
-/* */
-/* Hypertext instructions for Triangle are available on the Web at */
-/* */
-/* http://www.cs.cmu.edu/~quake/triangle.html */
-/* */
-/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */
-/* whatsoever. This code is provided "as-is". Use at your own risk. */
-/* */
-/* Some of the references listed below are marked with an asterisk. [*] */
-/* These references are available for downloading from the Web page */
-/* */
-/* http://www.cs.cmu.edu/~quake/triangle.research.html */
-/* */
-/* Three papers discussing aspects of Triangle are available. A short */
-/* overview appears in "Triangle: Engineering a 2D Quality Mesh */
-/* Generator and Delaunay Triangulator," in Applied Computational */
-/* Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh */
-/* Manocha, editors, Lecture Notes in Computer Science volume 1148, */
-/* pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM */
-/* Workshop on Applied Computational Geometry). [*] */
-/* */
-/* The algorithms are discussed in the greatest detail in "Delaunay */
-/* Refinement Algorithms for Triangular Mesh Generation," Computational */
-/* Geometry: Theory and Applications 22(1-3):21-74, May 2002. [*] */
-/* */
-/* More detail about the data structures may be found in my dissertation: */
-/* "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report */
-/* CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
-/* Pittsburgh, Pennsylvania, 18 May 1997. [*] */
-/* */
-/* Triangle was created as part of the Quake Project in the School of */
-/* Computer Science at Carnegie Mellon University. For further */
-/* information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F. */
-/* Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu, */
-/* "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous */
-/* Media on Parallel Computers," Computer Methods in Applied Mechanics */
-/* and Engineering 152(1-2):85-102, 22 January 1998. */
-/* */
-/* Triangle's Delaunay refinement algorithm for quality mesh generation is */
-/* a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm */
-/* for Quality 2-Dimensional Mesh Generation," Journal of Algorithms */
-/* 18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
-/* Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
-/* Annual Symposium on Computational Geometry (San Diego, California), */
-/* pages 274-280, Association for Computing Machinery, May 1993, */
-/* http://portal.acm.org/citation.cfm?id=161150 . */
-/* */
-/* The Delaunay refinement algorithm has been modified so that it meshes */
-/* domains with small input angles well, as described in Gary L. Miller, */
-/* Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's */
-/* Algorithm Works," Twelfth International Meshing Roundtable, pages */
-/* 91-102, Sandia National Laboratories, September 2003. [*] */
-/* */
-/* My implementation of the divide-and-conquer and incremental Delaunay */
-/* triangulation algorithms follows closely the presentation of Guibas */
-/* and Stolfi, even though I use a triangle-based data structure instead */
-/* of their quad-edge data structure. (In fact, I originally implemented */
-/* Triangle using the quad-edge data structure, but the switch to a */
-/* triangle-based data structure sped Triangle by a factor of two.) The */
-/* mesh manipulation primitives and the two aforementioned Delaunay */
-/* triangulation algorithms are described by Leonidas J. Guibas and Jorge */
-/* Stolfi, "Primitives for the Manipulation of General Subdivisions and */
-/* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */
-/* 4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
-/* */
-/* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */
-/* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */
-/* Delaunay Triangulation," International Journal of Computer and */
-/* Information Science 9(3):219-242, 1980. Triangle's improvement of the */
-/* divide-and-conquer algorithm by alternating between vertical and */
-/* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */
-/* Conquer Algorithm for Constructing Delaunay Triangulations," */
-/* Algorithmica 2(2):137-151, 1987. */
-/* */
-/* The incremental insertion algorithm was first proposed by C. L. Lawson, */
-/* "Software for C1 Surface Interpolation," in Mathematical Software III, */
-/* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */
-/* For point location, I use the algorithm of Ernst P. Mucke, Isaac */
-/* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */
-/* Preprocessing in Two- and Three-Dimensional Delaunay Triangulations," */
-/* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
-/* ACM, May 1996. [*] If I were to randomize the order of vertex */
-/* insertion (I currently don't bother), their result combined with the */
-/* result of Kenneth L. Clarkson and Peter W. Shor, "Applications of */
-/* Random Sampling in Computational Geometry II," Discrete & */
-/* Computational Geometry 4(1):387-421, 1989, would yield an expected */
-/* O(n^{4/3}) bound on running time. */
-/* */
-/* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */
-/* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */
-/* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */
-/* boundary of the triangulation are maintained in a splay tree for the */
-/* purpose of point location. Splay trees are described by Daniel */
-/* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
-/* Trees," Journal of the ACM 32(3):652-686, July 1985, */
-/* http://portal.acm.org/citation.cfm?id=3835 . */
-/* */
-/* The algorithms for exact computation of the signs of determinants are */
-/* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */
-/* Point Arithmetic and Fast Robust Geometric Predicates," Discrete & */
-/* Computational Geometry 18(3):305-363, October 1997. (Also available */
-/* as Technical Report CMU-CS-96-140, School of Computer Science, */
-/* Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.) [*] */
-/* An abbreviated version appears as Jonathan Richard Shewchuk, "Robust */
-/* Adaptive Floating-Point Geometric Predicates," Proceedings of the */
-/* Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
-/* Many of the ideas for my exact arithmetic routines originate with */
-/* Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point */
-/* Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
-/* Computer Society Press, 1991. [*] Many of the ideas for the correct */
-/* evaluation of the signs of determinants are taken from Steven Fortune */
-/* and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa- */
-/* tional Geometry," Proceedings of the Ninth Annual Symposium on */
-/* Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven */
-/* Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu- */
-/* lations," International Journal of Computational Geometry & Applica- */
-/* tions 5(1-2):193-213, March-June 1995. */
-/* */
-/* The method of inserting new vertices off-center (not precisely at the */
-/* circumcenter of every poor-quality triangle) is from Alper Ungor, */
-/* "Off-centers: A New Type of Steiner Points for Computing Size-Optimal */
-/* Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN */
-/* 2004 (Buenos Aires, Argentina), April 2004. */
-/* */
-/* For definitions of and results involving Delaunay triangulations, */
-/* constrained and conforming versions thereof, and other aspects of */
-/* triangular mesh generation, see the excellent survey by Marshall Bern */
-/* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */
-/* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */
-/* editors, World Scientific, Singapore, pp. 23-90, 1992. [*] */
-/* */
-/* The time for incrementally adding PSLG (planar straight line graph) */
-/* segments to create a constrained Delaunay triangulation is probably */
-/* O(t^2) per segment in the worst case and O(t) per segment in the */
-/* common case, where t is the number of triangles that intersect the */
-/* segment before it is inserted. This doesn't count point location, */
-/* which can be much more expensive. I could improve this to O(d log d) */
-/* time, but d is usually quite small, so it's not worth the bother. */
-/* (This note does not apply when the -s switch is used, invoking a */
-/* different method is used to insert segments.) */
-/* */
-/* The time for deleting a vertex from a Delaunay triangulation is O(d^2) */
-/* in the worst case and O(d) in the common case, where d is the degree */
-/* of the vertex being deleted. I could improve this to O(d log d) time, */
-/* but d is usually quite small, so it's not worth the bother. */
-/* */
-/* Ruppert's Delaunay refinement algorithm typically generates triangles */
-/* at a linear rate (constant time per triangle) after the initial */
-/* triangulation is formed. There may be pathological cases where */
-/* quadratic time is required, but these never arise in practice. */
-/* */
-/* The geometric predicates (circumcenter calculations, segment */
-/* intersection formulae, etc.) appear in my "Lecture Notes on Geometric */
-/* Robustness" at http://www.cs.berkeley.edu/~jrs/mesh . */
-/* */
-/* If you make any improvements to this code, please please please let me */
-/* know, so that I may obtain the improvements. Even if you don't change */
-/* the code, I'd still love to hear what it's being used for. */
-/* */
-/*****************************************************************************/
-
-#include "triangle_private.h"
-
-/* Fast lookup arrays to speed some of the mesh manipulation primitives. */
-
-int plus1mod3[3] = { 1, 2, 0 };
-int minus1mod3[3] = { 2, 0, 1 };
-
-/********* User-defined triangle evaluation routine begins here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* triunsuitable() Determine if a triangle is unsuitable, and thus must */
-/* be further refined. */
-/* */
-/* You may write your own procedure that decides whether or not a selected */
-/* triangle is too big (and needs to be refined). There are two ways to do */
-/* this. */
-/* */
-/* (1) Modify the procedure `triunsuitable' below, then recompile */
-/* Triangle. */
-/* */
-/* (2) Define the symbol EXTERNAL_TEST (either by adding the definition */
-/* to this file, or by using the appropriate compiler switch). This way, */
-/* you can compile triangle.c separately from your test. Write your own */
-/* `triunsuitable' procedure in a separate C file (using the same prototype */
-/* as below). Compile it and link the object code with triangle.o. */
-/* */
-/* This procedure returns 1 if the triangle is too large and should be */
-/* refined; 0 otherwise. */
-/* */
-/*****************************************************************************/
-
-#ifdef EXTERNAL_TEST
-
-int triunsuitable();
-
-#else /* not EXTERNAL_TEST */
-
-int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area) {
- REAL dxoa, dxda, dxod;
- REAL dyoa, dyda, dyod;
- REAL oalen, dalen, odlen;
- REAL maxlen;
-
- dxoa = triorg[0] - triapex[0];
- dyoa = triorg[1] - triapex[1];
- dxda = tridest[0] - triapex[0];
- dyda = tridest[1] - triapex[1];
- dxod = triorg[0] - tridest[0];
- dyod = triorg[1] - tridest[1];
- /* Find the squares of the lengths of the triangle's three edges. */
- oalen = dxoa * dxoa + dyoa * dyoa;
- dalen = dxda * dxda + dyda * dyda;
- odlen = dxod * dxod + dyod * dyod;
- /* Find the square of the length of the longest edge. */
- maxlen = (dalen > oalen) ? dalen : oalen;
- maxlen = (odlen > maxlen) ? odlen : maxlen;
-
- if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
- return 1;
- }
- else {
- return 0;
- }
-}
-
-#endif /* not EXTERNAL_TEST */
-
-/** **/
-/** **/
-/********* User-defined triangle evaluation routine ends here *********/
-
-/********* Memory allocation and program exit wrappers begin here *********/
-/** **/
-/** **/
-
-void triexit(int status) {
- printf("Exit %d.\n", status);
-
- exit(status);
-}
-
-VOID *trimalloc(int size) {
- VOID *memptr;
-
- memptr = (VOID *) malloc((unsigned int) size);
- if (memptr == (VOID *) NULL) {
- printf("Error: Out of memory.\n");
- triexit(1);
- }
- return (memptr);
-}
-
-void trifree(VOID *memptr) {
- free(memptr);
-}
-
-/** **/
-/** **/
-/********* Memory allocation and program exit wrappers end here *********/
-
-/********* User interaction routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* internalerror() Ask the user to send me the defective product. Exit. */
-/* */
-/*****************************************************************************/
-
-int error_set = 0;
-void internalerror() {
- error_set = 1;
- printf("Triangle is going to quit its job now\n");
-}
-
-/*****************************************************************************/
-/* */
-/* parsecommandline() Read the command line, identify switches, and set */
-/* up options and file names. */
-/* */
-/*****************************************************************************/
-
-void parsecommandline(int argc, char **argv, struct behavior *b) {
- error_set = 0;
-
-#define STARTINDEX 0
-
- b->poly = b->refine = b->quality = 0;
- b->vararea = b->fixedarea = b->usertest = 0;
- b->regionattrib = b->convex = b->weighted = b->jettison = 0;
- b->firstnumber = 1;
- b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
- b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
- b->noiterationnum = 0;
- b->noholes = b->noexact = 0;
- b->incremental = b->sweepline = 0;
- b->dwyer = 1;
- b->splitseg = 0;
- b->docheck = 0;
- b->nobisect = 0;
- b->conformdel = 0;
- b->steiner = -1;
- b->order = 1;
- b->minangle = 0.0;
- b->maxarea = -1.0;
- b->quiet = b->verbose = 0;
-
- int i, j;
-
- for (i = STARTINDEX; i < argc; i++) {
- for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
- if (argv[i][j] == 'p') {
- b->poly = 1;
- }
-#ifndef CDT_ONLY
- if (argv[i][j] == 'r')
- {
- b->refine = 1;
- }
- if (argv[i][j] == 'q')
- {
- b->quality = 1;
- if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
- (argv[i][j + 1] == '.'))
- {
- k = 0;
- while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
- (argv[i][j + 1] == '.'))
- {
- j++;
- workstring[k] = argv[i][j];
- k++;
- }
- workstring[k] = '\0';
- b->minangle = (REAL) strtod(workstring, (char **) NULL);
- }
- else
- {
- b->minangle = 20.0;
- }
- }
- if (argv[i][j] == 'a')
- {
- b->quality = 1;
- if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
- (argv[i][j + 1] == '.'))
- {
- b->fixedarea = 1;
- k = 0;
- while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
- (argv[i][j + 1] == '.'))
- {
- j++;
- workstring[k] = argv[i][j];
- k++;
- }
- workstring[k] = '\0';
- b->maxarea = (REAL) strtod(workstring, (char **) NULL);
- if (b->maxarea <= 0.0)
- {
- printf("Error: Maximum area must be greater than zero.\n");
- triexit(1);
- }
- }
- else
- {
- b->vararea = 1;
- }
- }
- if (argv[i][j] == 'u')
- {
- b->quality = 1;
- b->usertest = 1;
- }
-#endif /* not CDT_ONLY */
- if (argv[i][j] == 'A') {
- b->regionattrib = 1;
- }
- if (argv[i][j] == 'c') {
- b->convex = 1;
- }
- if (argv[i][j] == 'w') {
- b->weighted = 1;
- }
- if (argv[i][j] == 'W') {
- b->weighted = 2;
- }
- if (argv[i][j] == 'j') {
- b->jettison = 1;
- }
- if (argv[i][j] == 'z') {
- b->firstnumber = 0;
- }
- if (argv[i][j] == 'e') {
- b->edgesout = 1;
- }
- if (argv[i][j] == 'v') {
- b->voronoi = 1;
- }
- if (argv[i][j] == 'n') {
- b->neighbors = 1;
- }
- if (argv[i][j] == 'g') {
- b->geomview = 1;
- }
- if (argv[i][j] == 'B') {
- b->nobound = 1;
- }
- if (argv[i][j] == 'P') {
- b->nopolywritten = 1;
- }
- if (argv[i][j] == 'N') {
- b->nonodewritten = 1;
- }
- if (argv[i][j] == 'E') {
- b->noelewritten = 1;
- }
- if (argv[i][j] == 'O') {
- b->noholes = 1;
- }
- if (argv[i][j] == 'X') {
- b->noexact = 1;
- }
- if (argv[i][j] == 'o') {
- if (argv[i][j + 1] == '2') {
- j++;
- b->order = 2;
- }
- }
-#ifndef CDT_ONLY
- if (argv[i][j] == 'Y')
- {
- b->nobisect++;
- }
- if (argv[i][j] == 'S')
- {
- b->steiner = 0;
- while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9'))
- {
- j++;
- b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
- }
- }
-#endif /* not CDT_ONLY */
-#ifndef REDUCED
- if (argv[i][j] == 'i')
- {
- b->incremental = 1;
- }
- if (argv[i][j] == 'F')
- {
- b->sweepline = 1;
- }
-#endif /* not REDUCED */
- if (argv[i][j] == 'l') {
- b->dwyer = 0;
- }
-#ifndef REDUCED
-#ifndef CDT_ONLY
- if (argv[i][j] == 's')
- {
- b->splitseg = 1;
- }
- if ((argv[i][j] == 'D') || (argv[i][j] == 'L'))
- {
- b->quality = 1;
- b->conformdel = 1;
- }
-#endif /* not CDT_ONLY */
- if (argv[i][j] == 'C')
- {
- b->docheck = 1;
- }
-#endif /* not REDUCED */
- if (argv[i][j] == 'Q') {
- b->quiet = 1;
- }
- if (argv[i][j] == 'V') {
- b->verbose++;
- }
- }
- }
- b->usesegments = b->poly || b->refine || b->quality || b->convex;
- b->goodangle = cos(b->minangle * PI / 180.0);
- if (b->goodangle == 1.0) {
- b->offconstant = 0.0;
- }
- else {
- b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
- }
- b->goodangle *= b->goodangle;
- if (b->refine && b->noiterationnum) {
- printf( "Error: You cannot use the -I switch when refining a triangulation.\n");
- triexit(1);
- }
- /* Be careful not to allocate space for element area constraints that */
- /* will never be assigned any value (other than the default -1.0). */
- if (!b->refine && !b->poly) {
- b->vararea = 0;
- }
- /* Be careful not to add an extra attribute to each element unless the */
- /* input supports it (PSLG in, but not refining a preexisting mesh). */
- if (b->refine || !b->poly) {
- b->regionattrib = 0;
- }
- /* Regular/weighted triangulations are incompatible with PSLGs */
- /* and meshing. */
- if (b->weighted && (b->poly || b->quality)) {
- b->weighted = 0;
- if (!b->quiet) {
- printf("Warning: weighted triangulations (-w, -W) are incompatible\n");
- printf(" with PSLGs (-p) and meshing (-q, -a, -u). Weights ignored.\n");
- }
- }
- if (b->jettison && b->nonodewritten && !b->quiet) {
- printf("Warning: -j and -N switches are somewhat incompatible.\n");
- printf(" If any vertices are jettisoned, you will need the output\n");
- printf(" .node file to reconstruct the new node indices.");
- }
-}
-
-/** **/
-/** **/
-/********* User interaction routines begin here *********/
-
-/********* Memory management routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* poolzero() Set all of a pool's fields to zero. */
-/* */
-/* This procedure should never be called on a pool that has any memory */
-/* allocated to it, as that memory would leak. */
-/* */
-/*****************************************************************************/
-
-void poolzero(struct memorypool *pool) {
- pool->firstblock = (VOID **) NULL;
- pool->nowblock = (VOID **) NULL;
- pool->nextitem = (VOID *) NULL;
- pool->deaditemstack = (VOID *) NULL;
- pool->pathblock = (VOID **) NULL;
- pool->pathitem = (VOID *) NULL;
- pool->alignbytes = 0;
- pool->itembytes = 0;
- pool->itemsperblock = 0;
- pool->itemsfirstblock = 0;
- pool->items = 0;
- pool->maxitems = 0;
- pool->unallocateditems = 0;
- pool->pathitemsleft = 0;
-}
-
-/*****************************************************************************/
-/* */
-/* poolrestart() Deallocate all items in a pool. */
-/* */
-/* The pool is returned to its starting state, except that no memory is */
-/* freed to the operating system. Rather, the previously allocated blocks */
-/* are ready to be reused. */
-/* */
-/*****************************************************************************/
-
-void poolrestart(struct memorypool *pool) {
- unsigned long alignptr;
-
- pool->items = 0;
- pool->maxitems = 0;
-
- /* Set the currently active block. */
- pool->nowblock = pool->firstblock;
- /* Find the first item in the pool. Increment by the size of (VOID *). */
- alignptr = (unsigned long) (pool->nowblock + 1);
- /* Align the item on an `alignbytes'-byte boundary. */
- pool->nextitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* There are lots of unallocated items left in this block. */
- pool->unallocateditems = pool->itemsfirstblock;
- /* The stack of deallocated items is empty. */
- pool->deaditemstack = (VOID *) NULL;
-}
-
-/*****************************************************************************/
-/* */
-/* poolinit() Initialize a pool of memory for allocation of items. */
-/* */
-/* This routine initializes the machinery for allocating items. A `pool' */
-/* is created whose records have size at least `bytecount'. Items will be */
-/* allocated in `itemcount'-item blocks. Each item is assumed to be a */
-/* collection of words, and either pointers or floating-point values are */
-/* assumed to be the "primary" word type. (The "primary" word type is used */
-/* to determine alignment of items.) If `alignment' isn't zero, all items */
-/* will be `alignment'-byte aligned in memory. `alignment' must be either */
-/* a multiple or a factor of the primary word size; powers of two are safe. */
-/* `alignment' is normally used to create a few unused bits at the bottom */
-/* of each item's pointer, in which information may be stored. */
-/* */
-/* Don't change this routine unless you understand it. */
-/* */
-/*****************************************************************************/
-
-void poolinit(struct memorypool *pool, int bytecount, int itemcount, int firstitemcount,
- int alignment) {
- /* Find the proper alignment, which must be at least as large as: */
- /* - The parameter `alignment'. */
- /* - sizeof(VOID *), so the stack of dead items can be maintained */
- /* without unaligned accesses. */
- if (alignment > sizeof(VOID *)) {
- pool->alignbytes = alignment;
- }
- else {
- pool->alignbytes = sizeof(VOID *);
- }
- pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) * pool->alignbytes;
- pool->itemsperblock = itemcount;
- if (firstitemcount == 0) {
- pool->itemsfirstblock = itemcount;
- }
- else {
- pool->itemsfirstblock = firstitemcount;
- }
-
- /* Allocate a block of items. Space for `itemsfirstblock' items and one */
- /* pointer (to point to the next block) are allocated, as well as space */
- /* to ensure alignment of the items. */
- pool->firstblock = (VOID **) trimalloc(
- pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) + pool->alignbytes);
- /* Set the next block pointer to NULL. */
- *(pool->firstblock) = (VOID *) NULL;
- poolrestart(pool);
-}
-
-/*****************************************************************************/
-/* */
-/* pooldeinit() Free to the operating system all memory taken by a pool. */
-/* */
-/*****************************************************************************/
-
-void pooldeinit(struct memorypool *pool) {
- while (pool->firstblock != (VOID **) NULL) {
- pool->nowblock = (VOID **) *(pool->firstblock);
- trifree((VOID *) pool->firstblock);
- pool->firstblock = pool->nowblock;
- }
-}
-
-/*****************************************************************************/
-/* */
-/* poolalloc() Allocate space for an item. */
-/* */
-/*****************************************************************************/
-
-VOID *poolalloc(struct memorypool *pool) {
- VOID *newitem;
- VOID **newblock;
- unsigned long alignptr;
-
- /* First check the linked list of dead items. If the list is not */
- /* empty, allocate an item from the list rather than a fresh one. */
- if (pool->deaditemstack != (VOID *) NULL) {
- newitem = pool->deaditemstack; /* Take first item in list. */
- pool->deaditemstack = *(VOID **) pool->deaditemstack;
- }
- else {
- /* Check if there are any free items left in the current block. */
- if (pool->unallocateditems == 0) {
- /* Check if another block must be allocated. */
- if (*(pool->nowblock) == (VOID *) NULL) {
- /* Allocate a new block of items, pointed to by the previous block. */
- newblock = (VOID **) trimalloc(
- pool->itemsperblock * pool->itembytes + (int) sizeof(VOID *) + pool->alignbytes);
- *(pool->nowblock) = (VOID *) newblock;
- /* The next block pointer is NULL. */
- *newblock = (VOID *) NULL;
- }
-
- /* Move to the new block. */
- pool->nowblock = (VOID **) *(pool->nowblock);
- /* Find the first item in the block. */
- /* Increment by the size of (VOID *). */
- alignptr = (unsigned long) (pool->nowblock + 1);
- /* Align the item on an `alignbytes'-byte boundary. */
- pool->nextitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* There are lots of unallocated items left in this block. */
- pool->unallocateditems = pool->itemsperblock;
- }
-
- /* Allocate a new item. */
- newitem = pool->nextitem;
- /* Advance `nextitem' pointer to next free item in block. */
- pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);
- pool->unallocateditems--;
- pool->maxitems++;
- }
- pool->items++;
- return newitem;
-}
-
-/*****************************************************************************/
-/* */
-/* pooldealloc() Deallocate space for an item. */
-/* */
-/* The deallocated space is stored in a queue for later reuse. */
-/* */
-/*****************************************************************************/
-
-void pooldealloc(struct memorypool *pool, VOID *dyingitem) {
- /* Push freshly killed item onto stack. */
- *((VOID **) dyingitem) = pool->deaditemstack;
- pool->deaditemstack = dyingitem;
- pool->items--;
-}
-
-/*****************************************************************************/
-/* */
-/* traversalinit() Prepare to traverse the entire list of items. */
-/* */
-/* This routine is used in conjunction with traverse(). */
-/* */
-/*****************************************************************************/
-
-void traversalinit(struct memorypool *pool) {
- unsigned long alignptr;
-
- /* Begin the traversal in the first block. */
- pool->pathblock = pool->firstblock;
- /* Find the first item in the block. Increment by the size of (VOID *). */
- alignptr = (unsigned long) (pool->pathblock + 1);
- /* Align with item on an `alignbytes'-byte boundary. */
- pool->pathitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* Set the number of items left in the current block. */
- pool->pathitemsleft = pool->itemsfirstblock;
-}
-
-/*****************************************************************************/
-/* */
-/* traverse() Find the next item in the list. */
-/* */
-/* This routine is used in conjunction with traversalinit(). Be forewarned */
-/* that this routine successively returns all items in the list, including */
-/* deallocated ones on the deaditemqueue. It's up to you to figure out */
-/* which ones are actually dead. Why? I don't want to allocate extra */
-/* space just to demarcate dead items. It can usually be done more */
-/* space-efficiently by a routine that knows something about the structure */
-/* of the item. */
-/* */
-/*****************************************************************************/
-
-VOID *traverse(struct memorypool *pool) {
- VOID *newitem;
- unsigned long alignptr;
-
- /* Stop upon exhausting the list of items. */
- if (pool->pathitem == pool->nextitem) {
- return (VOID *) NULL;
- }
-
- /* Check whether any untraversed items remain in the current block. */
- if (pool->pathitemsleft == 0) {
- /* Find the next block. */
- pool->pathblock = (VOID **) *(pool->pathblock);
- /* Find the first item in the block. Increment by the size of (VOID *). */
- alignptr = (unsigned long) (pool->pathblock + 1);
- /* Align with item on an `alignbytes'-byte boundary. */
- pool->pathitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- - (alignptr % (unsigned long) pool->alignbytes));
- /* Set the number of items left in the current block. */
- pool->pathitemsleft = pool->itemsperblock;
- }
-
- newitem = pool->pathitem;
- /* Find the next item in the block. */
- pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);
- pool->pathitemsleft--;
- return newitem;
-}
-
-/*****************************************************************************/
-/* */
-/* dummyinit() Initialize the triangle that fills "outer space" and the */
-/* omnipresent subsegment. */
-/* */
-/* The triangle that fills "outer space," called `dummytri', is pointed to */
-/* by every triangle and subsegment on a boundary (be it outer or inner) of */
-/* the triangulation. Also, `dummytri' points to one of the triangles on */
-/* the convex hull (until the holes and concavities are carved), making it */
-/* possible to find a starting triangle for point location. */
-/* */
-/* The omnipresent subsegment, `dummysub', is pointed to by every triangle */
-/* or subsegment that doesn't have a full complement of real subsegments */
-/* to point to. */
-/* */
-/* `dummytri' and `dummysub' are generally required to fulfill only a few */
-/* invariants: their vertices must remain NULL and `dummytri' must always */
-/* be bonded (at offset zero) to some triangle on the convex hull of the */
-/* mesh, via a boundary edge. Otherwise, the connections of `dummytri' and */
-/* `dummysub' may change willy-nilly. This makes it possible to avoid */
-/* writing a good deal of special-case code (in the edge flip, for example) */
-/* for dealing with the boundary of the mesh, places where no subsegment is */
-/* present, and so forth. Other entities are frequently bonded to */
-/* `dummytri' and `dummysub' as if they were real mesh entities, with no */
-/* harm done. */
-/* */
-/*****************************************************************************/
-
-void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes, int subsegbytes) {
- unsigned long alignptr;
-
- /* Set up `dummytri', the `triangle' that occupies "outer space." */
- m->dummytribase = (triangle *) trimalloc(trianglebytes + m->triangles.alignbytes);
- /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
- alignptr = (unsigned long) m->dummytribase;
- m->dummytri = (triangle *) (alignptr + (unsigned long) m->triangles.alignbytes
- - (alignptr % (unsigned long) m->triangles.alignbytes));
- /* Initialize the three adjoining triangles to be "outer space." These */
- /* will eventually be changed by various bonding operations, but their */
- /* values don't really matter, as long as they can legally be */
- /* dereferenced. */
- m->dummytri[0] = (triangle) m->dummytri;
- m->dummytri[1] = (triangle) m->dummytri;
- m->dummytri[2] = (triangle) m->dummytri;
- /* Three NULL vertices. */
- m->dummytri[3] = (triangle) NULL;
- m->dummytri[4] = (triangle) NULL;
- m->dummytri[5] = (triangle) NULL;
-
- if (b->usesegments) {
- /* Set up `dummysub', the omnipresent subsegment pointed to by any */
- /* triangle side or subsegment end that isn't attached to a real */
- /* subsegment. */
- m->dummysubbase = (subseg *) trimalloc(subsegbytes + m->subsegs.alignbytes);
- /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
- alignptr = (unsigned long) m->dummysubbase;
- m->dummysub = (subseg *) (alignptr + (unsigned long) m->subsegs.alignbytes
- - (alignptr % (unsigned long) m->subsegs.alignbytes));
- /* Initialize the two adjoining subsegments to be the omnipresent */
- /* subsegment. These will eventually be changed by various bonding */
- /* operations, but their values don't really matter, as long as they */
- /* can legally be dereferenced. */
- m->dummysub[0] = (subseg) m->dummysub;
- m->dummysub[1] = (subseg) m->dummysub;
- /* Four NULL vertices. */
- m->dummysub[2] = (subseg) NULL;
- m->dummysub[3] = (subseg) NULL;
- m->dummysub[4] = (subseg) NULL;
- m->dummysub[5] = (subseg) NULL;
- /* Initialize the two adjoining triangles to be "outer space." */
- m->dummysub[6] = (subseg) m->dummytri;
- m->dummysub[7] = (subseg) m->dummytri;
- /* Set the boundary marker to zero. */
- *(int *) (m->dummysub + 8) = 0;
-
- /* Initialize the three adjoining subsegments of `dummytri' to be */
- /* the omnipresent subsegment. */
- m->dummytri[6] = (triangle) m->dummysub;
- m->dummytri[7] = (triangle) m->dummysub;
- m->dummytri[8] = (triangle) m->dummysub;
- }
-}
-
-/*****************************************************************************/
-/* */
-/* initializevertexpool() Calculate the size of the vertex data structure */
-/* and initialize its memory pool. */
-/* */
-/* This routine also computes the `vertexmarkindex' and `vertex2triindex' */
-/* indices used to find values within each vertex. */
-/* */
-/*****************************************************************************/
-
-void initializevertexpool(struct mesh *m, struct behavior *b) {
- int vertexsize;
-
- /* The index within each vertex at which the boundary marker is found, */
- /* followed by the vertex type. Ensure the vertex marker is aligned to */
- /* a sizeof(int)-byte address. */
- m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) + sizeof(int) - 1) / sizeof(int);
- vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
- if (b->poly) {
- /* The index within each vertex at which a triangle pointer is found. */
- /* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
- m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) / sizeof(triangle);
- vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
- }
-
- /* Initialize the pool of vertices. */
- poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
- m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
- sizeof(REAL));
-}
-
-/*****************************************************************************/
-/* */
-/* initializetrisubpools() Calculate the sizes of the triangle and */
-/* subsegment data structures and initialize */
-/* their memory pools. */
-/* */
-/* This routine also computes the `highorderindex', `elemattribindex', and */
-/* `areaboundindex' indices used to find values within each triangle. */
-/* */
-/*****************************************************************************/
-
-void initializetrisubpools(struct mesh *m, struct behavior *b) {
- int trisize;
-
- /* The index within each triangle at which the extra nodes (above three) */
- /* associated with high order elements are found. There are three */
- /* pointers to other triangles, three pointers to corners, and possibly */
- /* three pointers to subsegments before the extra nodes. */
- m->highorderindex = 6 + (b->usesegments * 3);
- /* The number of bytes occupied by a triangle. */
- trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) * sizeof(triangle);
- /* The index within each triangle at which its attributes are found, */
- /* where the index is measured in REALs. */
- m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
- /* The index within each triangle at which the maximum area constraint */
- /* is found, where the index is measured in REALs. Note that if the */
- /* `regionattrib' flag is set, an additional attribute will be added. */
- m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
- /* If triangle attributes or an area bound are needed, increase the number */
- /* of bytes occupied by a triangle. */
- if (b->vararea) {
- trisize = (m->areaboundindex + 1) * sizeof(REAL);
- }
- else if (m->eextras + b->regionattrib > 0) {
- trisize = m->areaboundindex * sizeof(REAL);
- }
- /* If a Voronoi diagram or triangle neighbor graph is requested, make */
- /* sure there's room to store an integer index in each triangle. This */
- /* integer index can occupy the same space as the subsegment pointers */
- /* or attributes or area constraint or extra nodes. */
- if ((b->voronoi || b->neighbors) && (trisize < 6 * sizeof(triangle) + sizeof(int))) {
- trisize = 6 * sizeof(triangle) + sizeof(int);
- }
-
- /* Having determined the memory size of a triangle, initialize the pool. */
- poolinit(&m->triangles, trisize, TRIPERBLOCK,
- (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) : TRIPERBLOCK, 4);
-
- if (b->usesegments) {
- /* Initialize the pool of subsegments. Take into account all eight */
- /* pointers and one boundary marker. */
- poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int), SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
-
- /* Initialize the "outer space" triangle and omnipresent subsegment. */
- dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
- }
- else {
- /* Initialize the "outer space" triangle. */
- dummyinit(m, b, m->triangles.itembytes, 0);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* triangledealloc() Deallocate space for a triangle, marking it dead. */
-/* */
-/*****************************************************************************/
-
-void triangledealloc(struct mesh *m, triangle *dyingtriangle) {
- /* Mark the triangle as dead. This makes it possible to detect dead */
- /* triangles when traversing the list of all triangles. */
- killtri(dyingtriangle);
- pooldealloc(&m->triangles, (VOID *) dyingtriangle);
-}
-
-/*****************************************************************************/
-/* */
-/* triangletraverse() Traverse the triangles, skipping dead ones. */
-/* */
-/*****************************************************************************/
-
-triangle *triangletraverse(struct mesh *m) {
- triangle *newtriangle;
-
- do {
- newtriangle = (triangle *) traverse(&m->triangles);
- if (newtriangle == (triangle *) NULL) {
- return (triangle *) NULL;
- }
- } while (deadtri(newtriangle)); /* Skip dead ones. */
- return newtriangle;
-}
-
-/*****************************************************************************/
-/* */
-/* subsegdealloc() Deallocate space for a subsegment, marking it dead. */
-/* */
-/*****************************************************************************/
-
-void subsegdealloc(struct mesh *m, subseg *dyingsubseg) {
- /* Mark the subsegment as dead. This makes it possible to detect dead */
- /* subsegments when traversing the list of all subsegments. */
- killsubseg(dyingsubseg);
- pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
-}
-
-/*****************************************************************************/
-/* */
-/* subsegtraverse() Traverse the subsegments, skipping dead ones. */
-/* */
-/*****************************************************************************/
-
-subseg *subsegtraverse(struct mesh *m) {
- subseg *newsubseg;
-
- do {
- newsubseg = (subseg *) traverse(&m->subsegs);
- if (newsubseg == (subseg *) NULL) {
- return (subseg *) NULL;
- }
- } while (deadsubseg(newsubseg)); /* Skip dead ones. */
- return newsubseg;
-}
-
-/*****************************************************************************/
-/* */
-/* vertexdealloc() Deallocate space for a vertex, marking it dead. */
-/* */
-/*****************************************************************************/
-
-void vertexdealloc(struct mesh *m, vertex dyingvertex) {
- /* Mark the vertex as dead. This makes it possible to detect dead */
- /* vertices when traversing the list of all vertices. */
- setvertextype(dyingvertex, DEADVERTEX);
- pooldealloc(&m->vertices, (VOID *) dyingvertex);
-}
-
-/*****************************************************************************/
-/* */
-/* vertextraverse() Traverse the vertices, skipping dead ones. */
-/* */
-/*****************************************************************************/
-
-vertex vertextraverse(struct mesh *m) {
- vertex newvertex;
-
- do {
- newvertex = (vertex) traverse(&m->vertices);
- if (newvertex == (vertex) NULL) {
- return (vertex) NULL;
- }
- } while (vertextype(newvertex) == DEADVERTEX); /* Skip dead ones. */
- return newvertex;
-}
-
-/*****************************************************************************/
-/* */
-/* getvertex() Get a specific vertex, by number, from the list. */
-/* */
-/* The first vertex is number 'firstnumber'. */
-/* */
-/* Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
-/* is large). I don't care to take the trouble to make it work in constant */
-/* time. */
-/* */
-/*****************************************************************************/
-
-vertex getvertex(struct mesh *m, struct behavior *b, int number) {
- VOID **getblock;
- char *foundvertex;
- unsigned long alignptr;
- int current;
-
- getblock = m->vertices.firstblock;
- current = b->firstnumber;
-
- /* Find the right block. */
- if (current + m->vertices.itemsfirstblock <= number) {
- getblock = (VOID **) *getblock;
- current += m->vertices.itemsfirstblock;
- while (current + m->vertices.itemsperblock <= number) {
- getblock = (VOID **) *getblock;
- current += m->vertices.itemsperblock;
- }
- }
-
- /* Now find the right vertex. */
- alignptr = (unsigned long) (getblock + 1);
- foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes
- - (alignptr % (unsigned long) m->vertices.alignbytes));
- return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
-}
-
-/*****************************************************************************/
-/* */
-/* triangledeinit() Free all remaining allocated memory. */
-/* */
-/*****************************************************************************/
-
-void triangledeinit(struct mesh *m, struct behavior *b) {
- pooldeinit(&m->triangles);
- trifree((VOID *) m->dummytribase);
- if (b->usesegments) {
- pooldeinit(&m->subsegs);
- trifree((VOID *) m->dummysubbase);
- }
- pooldeinit(&m->vertices);
-#ifndef CDT_ONLY
- if (b->quality)
- {
- pooldeinit(&m->badsubsegs);
- if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest)
- {
- pooldeinit(&m->badtriangles);
- pooldeinit(&m->flipstackers);
- }
- }
-#endif /* not CDT_ONLY */
-}
-
-/** **/
-/** **/
-/********* Memory management routines end here *********/
-
-/********* Constructors begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* maketriangle() Create a new triangle with orientation zero. */
-/* */
-/*****************************************************************************/
-
-void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri) {
- int i;
-
- newotri->tri = (triangle *) poolalloc(&m->triangles);
- /* Initialize the three adjoining triangles to be "outer space". */
- newotri->tri[0] = (triangle) m->dummytri;
- newotri->tri[1] = (triangle) m->dummytri;
- newotri->tri[2] = (triangle) m->dummytri;
- /* Three NULL vertices. */
- newotri->tri[3] = (triangle) NULL;
- newotri->tri[4] = (triangle) NULL;
- newotri->tri[5] = (triangle) NULL;
- if (b->usesegments) {
- /* Initialize the three adjoining subsegments to be the omnipresent */
- /* subsegment. */
- newotri->tri[6] = (triangle) m->dummysub;
- newotri->tri[7] = (triangle) m->dummysub;
- newotri->tri[8] = (triangle) m->dummysub;
- }
- for (i = 0; i < m->eextras; i++) {
- setelemattribute(*newotri, i, 0.0);
- }
- if (b->vararea) {
- setareabound(*newotri, -1.0);
- }
-
- newotri->orient = 0;
-}
-
-/*****************************************************************************/
-/* */
-/* makesubseg() Create a new subsegment with orientation zero. */
-/* */
-/*****************************************************************************/
-
-void makesubseg(struct mesh *m, struct osub *newsubseg) {
- newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
- /* Initialize the two adjoining subsegments to be the omnipresent */
- /* subsegment. */
- newsubseg->ss[0] = (subseg) m->dummysub;
- newsubseg->ss[1] = (subseg) m->dummysub;
- /* Four NULL vertices. */
- newsubseg->ss[2] = (subseg) NULL;
- newsubseg->ss[3] = (subseg) NULL;
- newsubseg->ss[4] = (subseg) NULL;
- newsubseg->ss[5] = (subseg) NULL;
- /* Initialize the two adjoining triangles to be "outer space." */
- newsubseg->ss[6] = (subseg) m->dummytri;
- newsubseg->ss[7] = (subseg) m->dummytri;
- /* Set the boundary marker to zero. */
- setmark(*newsubseg, 0);
-
- newsubseg->ssorient = 0;
-}
-
-/** **/
-/** **/
-/********* Constructors end here *********/
-
-/********* Geometric primitives begin here *********/
-/** **/
-/** **/
-
-/* The adaptive exact arithmetic geometric predicates implemented herein are */
-/* described in detail in my paper, "Adaptive Precision Floating-Point */
-/* Arithmetic and Fast Robust Geometric Predicates." See the header for a */
-/* full citation. */
-
-/* Which of the following two methods of finding the absolute values is */
-/* fastest is compiler-dependent. A few compilers can inline and optimize */
-/* the fabs() call; but most will incur the overhead of a function call, */
-/* which is disastrously slow. A faster way on IEEE machines might be to */
-/* mask the appropriate bit, but that's difficult to do in C without */
-/* forcing the value to be stored to memory (rather than be kept in the */
-/* register to which the optimizer assigned it). */
-
-#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
-/* #define Absolute(a) fabs(a) */
-
-/* Many of the operations are broken up into two pieces, a main part that */
-/* performs an approximate operation, and a "tail" that computes the */
-/* roundoff error of that operation. */
-/* */
-/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
-/* Split(), and Two_Product() are all implemented as described in the */
-/* reference. Each of these macros requires certain variables to be */
-/* defined in the calling routine. The variables `bvirt', `c', `abig', */
-/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `' because */
-/* they store the result of an operation that may incur roundoff error. */
-/* The input parameter `x' (or the highest numbered `x_' parameter) must */
-/* also be declared `'. */
-
-#define Fast_Two_Sum_Tail(a, b, x, y) \
- bvirt = x - a; \
- y = b - bvirt
-
-#define Fast_Two_Sum(a, b, x, y) \
- x = (REAL) (a + b); \
- Fast_Two_Sum_Tail(a, b, x, y)
-
-#define Two_Sum_Tail(a, b, x, y) \
- bvirt = (REAL) (x - a); \
- avirt = x - bvirt; \
- bround = b - bvirt; \
- around = a - avirt; \
- y = around + bround
-
-#define Two_Sum(a, b, x, y) \
- x = (REAL) (a + b); \
- Two_Sum_Tail(a, b, x, y)
-
-#define Two_Diff_Tail(a, b, x, y) \
- bvirt = (REAL) (a - x); \
- avirt = x + bvirt; \
- bround = bvirt - b; \
- around = a - avirt; \
- y = around + bround
-
-#define Two_Diff(a, b, x, y) \
- x = (REAL) (a - b); \
- Two_Diff_Tail(a, b, x, y)
-
-#define Split(a, ahi, alo) \
- c = (REAL) (splitter * a); \
- abig = (REAL) (c - a); \
- ahi = c - abig; \
- alo = a - ahi
-
-#define Two_Product_Tail(a, b, x, y) \
- Split(a, ahi, alo); \
- Split(b, bhi, blo); \
- err1 = x - (ahi * bhi); \
- err2 = err1 - (alo * bhi); \
- err3 = err2 - (ahi * blo); \
- y = (alo * blo) - err3
-
-#define Two_Product(a, b, x, y) \
- x = (REAL) (a * b); \
- Two_Product_Tail(a, b, x, y)
-
-/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
-/* already been split. Avoids redundant splitting. */
-
-#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
- x = (REAL) (a * b); \
- Split(a, ahi, alo); \
- err1 = x - (ahi * bhi); \
- err2 = err1 - (alo * bhi); \
- err3 = err2 - (ahi * blo); \
- y = (alo * blo) - err3
-
-/* Square() can be done more quickly than Two_Product(). */
-
-#define Square_Tail(a, x, y) \
- Split(a, ahi, alo); \
- err1 = x - (ahi * ahi); \
- err3 = err1 - ((ahi + ahi) * alo); \
- y = (alo * alo) - err3
-
-#define Square(a, x, y) \
- x = (REAL) (a * a); \
- Square_Tail(a, x, y)
-
-/* Macros for summing expansions of various fixed lengths. These are all */
-/* unrolled versions of Expansion_Sum(). */
-
-#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
- Two_Sum(a0, b , _i, x0); \
- Two_Sum(a1, _i, x2, x1)
-
-#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
- Two_Diff(a0, b , _i, x0); \
- Two_Sum( a1, _i, x2, x1)
-
-#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
- Two_One_Sum(a1, a0, b0, _j, _0, x0); \
- Two_One_Sum(_j, _0, b1, x3, x2, x1)
-
-#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
- Two_One_Diff(a1, a0, b0, _j, _0, x0); \
- Two_One_Diff(_j, _0, b1, x3, x2, x1)
-
-/* Macro for multiplying a two-component expansion by a single component. */
-
-#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
- Split(b, bhi, blo); \
- Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
- Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
- Two_Sum(_i, _0, _k, x1); \
- Fast_Two_Sum(_j, _k, x3, x2)
-
-/*****************************************************************************/
-/* */
-/* exactinit() Initialize the variables used for exact arithmetic. */
-/* */
-/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
-/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
-/* error. It is used for floating-point error analysis. */
-/* */
-/* `splitter' is used to split floating-point numbers into two half- */
-/* length significands for exact multiplication. */
-/* */
-/* I imagine that a highly optimizing compiler might be too smart for its */
-/* own good, and somehow cause this routine to fail, if it pretends that */
-/* floating-point arithmetic is too much like real arithmetic. */
-/* */
-/* Don't change this routine unless you fully understand it. */
-/* */
-/*****************************************************************************/
-
-void exactinit() {
- REAL half;
- REAL check, lastcheck;
- int every_other;
-#ifdef LINUX
- int cword;
-#endif /* LINUX */
-
-#ifdef CPU86
-#ifdef SINGLE
- _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
-#else /* not SINGLE */
- _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
-#endif /* not SINGLE */
-#endif /* CPU86 */
-#ifdef LINUX
-#ifdef SINGLE
- /* cword = 4223; */
- cword = 4210; /* set FPU control word for single precision */
-#else /* not SINGLE */
- /* cword = 4735; */
- cword = 4722; /* set FPU control word for double precision */
-#endif /* not SINGLE */
- _FPU_SETCW(cword);
-#endif /* LINUX */
-
- every_other = 1;
- half = 0.5;
- epsilon = 1.0;
- splitter = 1.0;
- check = 1.0;
- /* Repeatedly divide `epsilon' by two until it is too small to add to */
- /* one without causing roundoff. (Also check if the sum is equal to */
- /* the previous sum, for machines that round up instead of using exact */
- /* rounding. Not that these routines will work on such machines.) */
- do {
- lastcheck = check;
- epsilon *= half;
- if (every_other) {
- splitter *= 2.0;
- }
- every_other = !every_other;
- check = 1.0 + epsilon;
- } while ((check != 1.0) && (check != lastcheck));
- splitter += 1.0;
- /* Error bounds for orientation and incircle tests. */
- resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
- ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
- ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
- ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
- iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
- iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
- iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
- o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
- o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
- o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
-}
-
-/*****************************************************************************/
-/* */
-/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
-/* components from the output expansion. */
-/* */
-/* Sets h = e + f. See my Robust Predicates paper for details. */
-/* */
-/* If round-to-even is used (as with IEEE 754), maintains the strongly */
-/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
-/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
-/* properties. */
-/* */
-/*****************************************************************************/
-
-int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h) {
- REAL Q;
- REAL Qnew;
- REAL hh;
- REAL bvirt;
- REAL avirt, bround, around;
- int eindex, findex, hindex;
- REAL enow, fnow;
-
- enow = e[0];
- fnow = f[0];
- eindex = findex = 0;
- if ((fnow > enow) == (fnow > -enow)) {
- Q = enow;
- enow = e[++eindex];
- }
- else {
- Q = fnow;
- fnow = f[++findex];
- }
- hindex = 0;
- if ((eindex < elen) && (findex < flen)) {
- if ((fnow > enow) == (fnow > -enow)) {
- Fast_Two_Sum(enow, Q, Qnew, hh);
- enow = e[++eindex];
- }
- else {
- Fast_Two_Sum(fnow, Q, Qnew, hh);
- fnow = f[++findex];
- }
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- while ((eindex < elen) && (findex < flen)) {
- if ((fnow > enow) == (fnow > -enow)) {
- Two_Sum(Q, enow, Qnew, hh);
- enow = e[++eindex];
- }
- else {
- Two_Sum(Q, fnow, Qnew, hh);
- fnow = f[++findex];
- }
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- }
- while (eindex < elen) {
- Two_Sum(Q, enow, Qnew, hh);
- enow = e[++eindex];
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- while (findex < flen) {
- Two_Sum(Q, fnow, Qnew, hh);
- fnow = f[++findex];
- Q = Qnew;
- if (hh != 0.0) {
- h[hindex++] = hh;
- }
- }
- if ((Q != 0.0) || (hindex == 0)) {
- h[hindex++] = Q;
- }
- return hindex;
-}
-
-/*****************************************************************************/
-/* */
-/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
-/* eliminating zero components from the */
-/* output expansion. */
-/* */
-/* Sets h = be. See my Robust Predicates paper for details. */
-/* */
-/* Maintains the nonoverlapping property. If round-to-even is used (as */
-/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
-/* properties as well. (That is, if e has one of these properties, so */
-/* will h.) */
-/* */
-/*****************************************************************************/
-
-int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) {
- REAL Q, sum;
- REAL hh;
- REAL product1;
- REAL product0;
- int eindex, hindex;
- REAL enow;
- REAL bvirt;
- REAL avirt, bround, around;
- REAL c;
- REAL abig;
- REAL ahi, alo, bhi, blo;
- REAL err1, err2, err3;
-
- Split(b, bhi, blo);
- Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
- hindex = 0;
- if (hh != 0) {
- h[hindex++] = hh;
- }
- for (eindex = 1; eindex < elen; eindex++) {
- enow = e[eindex];
- Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
- Two_Sum(Q, product0, sum, hh);
- if (hh != 0) {
- h[hindex++] = hh;
- }
- Fast_Two_Sum(product1, sum, Q, hh);
- if (hh != 0) {
- h[hindex++] = hh;
- }
- }
- if ((Q != 0.0) || (hindex == 0)) {
- h[hindex++] = Q;
- }
- return hindex;
-}
-
-/*****************************************************************************/
-/* */
-/* estimate() Produce a one-word estimate of an expansion's value. */
-/* */
-/* See my Robust Predicates paper for details. */
-/* */
-/*****************************************************************************/
-
-REAL estimate(int elen, REAL *e) {
- REAL Q;
- int eindex;
-
- Q = e[0];
- for (eindex = 1; eindex < elen; eindex++) {
- Q += e[eindex];
- }
- return Q;
-}
-
-/*****************************************************************************/
-/* */
-/* counterclockwise() Return a positive value if the points pa, pb, and */
-/* pc occur in counterclockwise order; a negative */
-/* value if they occur in clockwise order; and zero */
-/* if they are collinear. The result is also a rough */
-/* approximation of twice the signed area of the */
-/* triangle defined by the three points. */
-/* */
-/* Uses exact arithmetic if necessary to ensure a correct answer. The */
-/* result returned is the determinant of a matrix. This determinant is */
-/* computed adaptively, in the sense that exact arithmetic is used only to */
-/* the degree it is needed to ensure that the returned value has the */
-/* correct sign. Hence, this function is usually quite fast, but will run */
-/* more slowly when the input points are collinear or nearly so. */
-/* */
-/* See my Robust Predicates paper for details. */
-/* */
-/*****************************************************************************/
-
-REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum) {
- REAL acx, acy, bcx, bcy;
- REAL acxtail, acytail, bcxtail, bcytail;
- REAL detleft, detright;
- REAL detlefttail, detrighttail;
- REAL det, errbound;
- REAL B[4], C1[8], C2[12], D[16];
- REAL B3;
- int C1length, C2length, Dlength;
- REAL u[4];
- REAL u3;
- REAL s1, t1;
- REAL s0, t0;
-
- REAL bvirt;
- REAL avirt, bround, around;
- REAL c;
- REAL abig;
- REAL ahi, alo, bhi, blo;
- REAL err1, err2, err3;
- REAL _i, _j;
- REAL _0;
-
- acx = (REAL) (pa[0] - pc[0]);
- bcx = (REAL) (pb[0] - pc[0]);
- acy = (REAL) (pa[1] - pc[1]);
- bcy = (REAL) (pb[1] - pc[1]);
-
- Two_Product(acx, bcy, detleft, detlefttail);
- Two_Product(acy, bcx, detright, detrighttail);
-
- Two_Two_Diff(detleft, detlefttail, detright, detrighttail, B3, B[2], B[1], B[0]);
- B[3] = B3;
-
- det = estimate(4, B);
- errbound = ccwerrboundB * detsum;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
- Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
- Two_Diff_Tail(pa[1], pc[1], acy, acytail);
- Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
-
- if ((acxtail == 0.0) && (acytail == 0.0) && (bcxtail == 0.0) && (bcytail == 0.0)) {
- return det;
- }
-
- errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
- det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Product(acxtail, bcy, s1, s0);
- Two_Product(acytail, bcx, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
-
- Two_Product(acx, bcytail, s1, s0);
- Two_Product(acy, bcxtail, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
-
- Two_Product(acxtail, bcytail, s1, s0);
- Two_Product(acytail, bcxtail, t1, t0);
- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
-
- return (D[Dlength - 1]);
-}
-
-REAL counterclockwise(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc) {
- REAL detleft, detright, det;
- REAL detsum, errbound;
-
- m->counterclockcount++;
-
- detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
- detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
- det = detleft - detright;
-
- if (b->noexact) {
- return det;
- }
-
- if (detleft > 0.0) {
- if (detright <= 0.0) {
- return det;
- }
- else {
- detsum = detleft + detright;
- }
- }
- else if (detleft < 0.0) {
- if (detright >= 0.0) {
- return det;
- }
- else {
- detsum = -detleft - detright;
- }
- }
- else {
- return det;
- }
-
- errbound = ccwerrboundA * detsum;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- return counterclockwiseadapt(pa, pb, pc, detsum);
-}
-
-/*****************************************************************************/
-/* */
-/* incircle() Return a positive value if the point pd lies inside the */
-/* circle passing through pa, pb, and pc; a negative value if */
-/* it lies outside; and zero if the four points are cocircular.*/
-/* The points pa, pb, and pc must be in counterclockwise */
-/* order, or the sign of the result will be reversed. */
-/* */
-/* Uses exact arithmetic if necessary to ensure a correct answer. The */
-/* result returned is the determinant of a matrix. This determinant is */
-/* computed adaptively, in the sense that exact arithmetic is used only to */
-/* the degree it is needed to ensure that the returned value has the */
-/* correct sign. Hence, this function is usually quite fast, but will run */
-/* more slowly when the input points are cocircular or nearly so. */
-/* */
-/* See my Robust Predicates paper for details. */
-/* */
-/*****************************************************************************/
-
-REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent) {
- REAL adx, bdx, cdx, ady, bdy, cdy;
- REAL det, errbound;
-
- REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
- REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
- REAL bc[4], ca[4], ab[4];
- REAL bc3, ca3, ab3;
- REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
- int axbclen, axxbclen, aybclen, ayybclen, alen;
- REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
- int bxcalen, bxxcalen, bycalen, byycalen, blen;
- REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
- int cxablen, cxxablen, cyablen, cyyablen, clen;
- REAL abdet[64];
- int ablen;
- REAL fin1[1152], fin2[1152];
- REAL *finnow, *finother, *finswap;
- int finlength;
-
- REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
- REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
- REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
- REAL aa[4], bb[4], cc[4];
- REAL aa3, bb3, cc3;
- REAL ti1, tj1;
- REAL ti0, tj0;
- REAL u[4], v[4];
- REAL u3, v3;
- REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
- REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
- int temp8len, temp16alen, temp16blen, temp16clen;
- int temp32alen, temp32blen, temp48len, temp64len;
- REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
- int axtbblen, axtcclen, aytbblen, aytcclen;
- REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
- int bxtaalen, bxtcclen, bytaalen, bytcclen;
- REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
- int cxtaalen, cxtbblen, cytaalen, cytbblen;
- REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
- int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
- REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
- int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
- REAL axtbctt[8], aytbctt[8], bxtcatt[8];
- REAL bytcatt[8], cxtabtt[8], cytabtt[8];
- int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
- REAL abt[8], bct[8], cat[8];
- int abtlen, bctlen, catlen;
- REAL abtt[4], bctt[4], catt[4];
- int abttlen, bcttlen, cattlen;
- REAL abtt3, bctt3, catt3;
- REAL negate;
-
- REAL bvirt;
- REAL avirt, bround, around;
- REAL c;
- REAL abig;
- REAL ahi, alo, bhi, blo;
- REAL err1, err2, err3;
- REAL _i, _j;
- REAL _0;
-
- adx = (REAL) (pa[0] - pd[0]);
- bdx = (REAL) (pb[0] - pd[0]);
- cdx = (REAL) (pc[0] - pd[0]);
- ady = (REAL) (pa[1] - pd[1]);
- bdy = (REAL) (pb[1] - pd[1]);
- cdy = (REAL) (pc[1] - pd[1]);
-
- Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
- Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
- Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
- bc[3] = bc3;
- axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
- axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
- aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
- ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
- alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
-
- Two_Product(cdx, ady, cdxady1, cdxady0);
- Two_Product(adx, cdy, adxcdy1, adxcdy0);
- Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
- ca[3] = ca3;
- bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
- bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
- bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
- byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
- blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
-
- Two_Product(adx, bdy, adxbdy1, adxbdy0);
- Two_Product(bdx, ady, bdxady1, bdxady0);
- Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
- ab[3] = ab3;
- cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
- cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
- cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
- cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
- clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
-
- ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
- finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
-
- det = estimate(finlength, fin1);
- errbound = iccerrboundB * permanent;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
- Two_Diff_Tail(pa[1], pd[1], ady, adytail);
- Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
- Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
- Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
- Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
- if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0)
- && (bdytail == 0.0) && (cdytail == 0.0)) {
- return det;
- }
-
- errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
- det += ((adx * adx + ady * ady)
- * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail))
- + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
- + ((bdx * bdx + bdy * bdy)
- * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail))
- + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
- + ((cdx * cdx + cdy * cdy)
- * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail))
- + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- finnow = fin1;
- finother = fin2;
-
- if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
- Square(adx, adxadx1, adxadx0);
- Square(ady, adyady1, adyady0);
- Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
- aa[3] = aa3;
- }
- if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
- Square(bdx, bdxbdx1, bdxbdx0);
- Square(bdy, bdybdy1, bdybdy0);
- Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
- bb[3] = bb3;
- }
- if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
- Square(cdx, cdxcdx1, cdxcdx0);
- Square(cdy, cdycdy1, cdycdy0);
- Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
- cc[3] = cc3;
- }
-
- if (adxtail != 0.0) {
- axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);
-
- axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
- temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
-
- axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
- temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (adytail != 0.0) {
- aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);
-
- aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
- temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
-
- aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
- temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdxtail != 0.0) {
- bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);
-
- bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
- temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
-
- bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
- temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdytail != 0.0) {
- bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);
-
- bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
- temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
-
- bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
- temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdxtail != 0.0) {
- cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);
-
- cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
- temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
-
- cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
- temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdytail != 0.0) {
- cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
- temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);
-
- cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
- temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
-
- cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
- temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
-
- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- if ((adxtail != 0.0) || (adytail != 0.0)) {
- if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
- Two_Product(bdxtail, cdy, ti1, ti0);
- Two_Product(bdx, cdytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -bdy;
- Two_Product(cdxtail, negate, ti1, ti0);
- negate = -bdytail;
- Two_Product(cdx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
-
- Two_Product(bdxtail, cdytail, ti1, ti0);
- Two_Product(cdxtail, bdytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
- bctt[3] = bctt3;
- bcttlen = 4;
- }
- else {
- bct[0] = 0.0;
- bctlen = 1;
- bctt[0] = 0.0;
- bcttlen = 1;
- }
-
- if (adxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
- axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (bdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
- axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
- temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
- temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (adytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
- aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
- aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
- temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
- temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- if ((bdxtail != 0.0) || (bdytail != 0.0)) {
- if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
- Two_Product(cdxtail, ady, ti1, ti0);
- Two_Product(cdx, adytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -cdy;
- Two_Product(adxtail, negate, ti1, ti0);
- negate = -cdytail;
- Two_Product(adx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
-
- Two_Product(cdxtail, adytail, ti1, ti0);
- Two_Product(adxtail, cdytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
- catt[3] = catt3;
- cattlen = 4;
- }
- else {
- cat[0] = 0.0;
- catlen = 1;
- catt[0] = 0.0;
- cattlen = 1;
- }
-
- if (bdxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
- bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (cdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (adytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
- bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
- temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
- temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
- bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
- bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
- temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
- temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- if ((cdxtail != 0.0) || (cdytail != 0.0)) {
- if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
- Two_Product(adxtail, bdy, ti1, ti0);
- Two_Product(adx, bdytail, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
- u[3] = u3;
- negate = -ady;
- Two_Product(bdxtail, negate, ti1, ti0);
- negate = -adytail;
- Two_Product(bdx, negate, tj1, tj0);
- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
- v[3] = v3;
- abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
-
- Two_Product(adxtail, bdytail, ti1, ti0);
- Two_Product(bdxtail, adytail, tj1, tj0);
- Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
- abtt[3] = abtt3;
- abttlen = 4;
- }
- else {
- abt[0] = 0.0;
- abtlen = 1;
- abtt[0] = 0.0;
- abttlen = 1;
- }
-
- if (cdxtail != 0.0) {
- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
- cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (adytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdytail != 0.0) {
- temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
- finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
- cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
- temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
- temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdytail != 0.0) {
- temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
- cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
- cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
- temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
- temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
- temp32b);
- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
-
- return finnow[finlength - 1];
-}
-
-REAL incircle(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd) {
- REAL adx, bdx, cdx, ady, bdy, cdy;
- REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
- REAL alift, blift, clift;
- REAL det;
- REAL permanent, errbound;
-
- m->incirclecount++;
-
- adx = pa[0] - pd[0];
- bdx = pb[0] - pd[0];
- cdx = pc[0] - pd[0];
- ady = pa[1] - pd[1];
- bdy = pb[1] - pd[1];
- cdy = pc[1] - pd[1];
-
- bdxcdy = bdx * cdy;
- cdxbdy = cdx * bdy;
- alift = adx * adx + ady * ady;
-
- cdxady = cdx * ady;
- adxcdy = adx * cdy;
- blift = bdx * bdx + bdy * bdy;
-
- adxbdy = adx * bdy;
- bdxady = bdx * ady;
- clift = cdx * cdx + cdy * cdy;
-
- det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady);
-
- if (b->noexact) {
- return det;
- }
-
- permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
- + (Absolute(cdxady) + Absolute(adxcdy)) * blift
- + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
- errbound = iccerrboundA * permanent;
- if ((det > errbound) || (-det > errbound)) {
- return det;
- }
-
- return incircleadapt(pa, pb, pc, pd, permanent);
-}
-
-/*****************************************************************************/
-/* */
-/* orient3d() Return a positive value if the point pd lies below the */
-/* plane passing through pa, pb, and pc; "below" is defined so */
-/* that pa, pb, and pc appear in counterclockwise order when */
-/* viewed from above the plane. Returns a negative value if */
-/* pd lies above the plane. Returns zero if the points are */
-/* coplanar. The result is also a rough approximation of six */
-/* times the signed volume of the tetrahedron defined by the */
-/* four points. */
-/* */
-/* Uses exact arithmetic if necessary to ensure a correct answer. The */
-/* result returned is the determinant of a matrix. This determinant is */
-/* computed adaptively, in the sense that exact arithmetic is used only to */
-/* the degree it is needed to ensure that the returned value has the */
-/* correct sign. Hence, this function is usually quite fast, but will run */
-/* more slowly when the input points are coplanar or nearly so. */
-/* */
-/* See my Robust Predicates paper for details. */
-/* */
-/*****************************************************************************/
-
-REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL aheight, REAL bheight,
- REAL cheight, REAL dheight, REAL permanent) {
- REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
- REAL det, errbound;
-
- REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
- REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
- REAL bc[4], ca[4], ab[4];
- REAL bc3, ca3, ab3;
- REAL adet[8], bdet[8], cdet[8];
- int alen, blen, clen;
- REAL abdet[16];
- int ablen;
- REAL *finnow, *finother, *finswap;
- REAL fin1[192], fin2[192];
- int finlength;
-
- REAL adxtail, bdxtail, cdxtail;
- REAL adytail, bdytail, cdytail;
- REAL adheighttail, bdheighttail, cdheighttail;
- REAL at_blarge, at_clarge;
- REAL bt_clarge, bt_alarge;
- REAL ct_alarge, ct_blarge;
- REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
- int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
- REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
- REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
- REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
- REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
- REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
- REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
- REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
- REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
- REAL bct[8], cat[8], abt[8];
- int bctlen, catlen, abtlen;
- REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
- REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
- REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
- REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
- REAL u[4], v[12], w[16];
- REAL u3;
- int vlength, wlength;
- REAL negate;
-
- REAL bvirt;
- REAL avirt, bround, around;
- REAL c;
- REAL abig;
- REAL ahi, alo, bhi, blo;
- REAL err1, err2, err3;
- REAL _i, _j, _k;
- REAL _0;
-
- adx = (REAL) (pa[0] - pd[0]);
- bdx = (REAL) (pb[0] - pd[0]);
- cdx = (REAL) (pc[0] - pd[0]);
- ady = (REAL) (pa[1] - pd[1]);
- bdy = (REAL) (pb[1] - pd[1]);
- cdy = (REAL) (pc[1] - pd[1]);
- adheight = (REAL) (aheight - dheight);
- bdheight = (REAL) (bheight - dheight);
- cdheight = (REAL) (cheight - dheight);
-
- Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
- Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
- Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
- bc[3] = bc3;
- alen = scale_expansion_zeroelim(4, bc, adheight, adet);
-
- Two_Product(cdx, ady, cdxady1, cdxady0);
- Two_Product(adx, cdy, adxcdy1, adxcdy0);
- Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
- ca[3] = ca3;
- blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
-
- Two_Product(adx, bdy, adxbdy1, adxbdy0);
- Two_Product(bdx, ady, bdxady1, bdxady0);
- Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
- ab[3] = ab3;
- clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
-
- ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
- finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
-
- det = estimate(finlength, fin1);
- errbound = o3derrboundB * permanent;
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
- Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
- Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
- Two_Diff_Tail(pa[1], pd[1], ady, adytail);
- Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
- Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
- Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
- Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
- Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
-
- if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0)
- && (bdytail == 0.0) && (cdytail == 0.0) && (adheighttail == 0.0) && (bdheighttail == 0.0)
- && (cdheighttail == 0.0)) {
- return det;
- }
-
- errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
- det += (adheight * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail))
- + adheighttail * (bdx * cdy - bdy * cdx))
- + (bdheight * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail))
- + bdheighttail * (cdx * ady - cdy * adx))
- + (cdheight * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail))
- + cdheighttail * (adx * bdy - ady * bdx));
- if ((det >= errbound) || (-det >= errbound)) {
- return det;
- }
-
- finnow = fin1;
- finother = fin2;
-
- if (adxtail == 0.0) {
- if (adytail == 0.0) {
- at_b[0] = 0.0;
- at_blen = 1;
- at_c[0] = 0.0;
- at_clen = 1;
- }
- else {
- negate = -adytail;
- Two_Product(negate, bdx, at_blarge, at_b[0]);
- at_b[1] = at_blarge;
- at_blen = 2;
- Two_Product(adytail, cdx, at_clarge, at_c[0]);
- at_c[1] = at_clarge;
- at_clen = 2;
- }
- }
- else {
- if (adytail == 0.0) {
- Two_Product(adxtail, bdy, at_blarge, at_b[0]);
- at_b[1] = at_blarge;
- at_blen = 2;
- negate = -adxtail;
- Two_Product(negate, cdy, at_clarge, at_c[0]);
- at_c[1] = at_clarge;
- at_clen = 2;
- }
- else {
- Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
- Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
- Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, at_blarge, at_b[2], at_b[1],
- at_b[0]);
- at_b[3] = at_blarge;
- at_blen = 4;
- Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
- Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
- Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, at_clarge, at_c[2], at_c[1],
- at_c[0]);
- at_c[3] = at_clarge;
- at_clen = 4;
- }
- }
- if (bdxtail == 0.0) {
- if (bdytail == 0.0) {
- bt_c[0] = 0.0;
- bt_clen = 1;
- bt_a[0] = 0.0;
- bt_alen = 1;
- }
- else {
- negate = -bdytail;
- Two_Product(negate, cdx, bt_clarge, bt_c[0]);
- bt_c[1] = bt_clarge;
- bt_clen = 2;
- Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
- bt_a[1] = bt_alarge;
- bt_alen = 2;
- }
- }
- else {
- if (bdytail == 0.0) {
- Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
- bt_c[1] = bt_clarge;
- bt_clen = 2;
- negate = -bdxtail;
- Two_Product(negate, ady, bt_alarge, bt_a[0]);
- bt_a[1] = bt_alarge;
- bt_alen = 2;
- }
- else {
- Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
- Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
- Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, bt_clarge, bt_c[2], bt_c[1],
- bt_c[0]);
- bt_c[3] = bt_clarge;
- bt_clen = 4;
- Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
- Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
- Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, bt_alarge, bt_a[2], bt_a[1],
- bt_a[0]);
- bt_a[3] = bt_alarge;
- bt_alen = 4;
- }
- }
- if (cdxtail == 0.0) {
- if (cdytail == 0.0) {
- ct_a[0] = 0.0;
- ct_alen = 1;
- ct_b[0] = 0.0;
- ct_blen = 1;
- }
- else {
- negate = -cdytail;
- Two_Product(negate, adx, ct_alarge, ct_a[0]);
- ct_a[1] = ct_alarge;
- ct_alen = 2;
- Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
- ct_b[1] = ct_blarge;
- ct_blen = 2;
- }
- }
- else {
- if (cdytail == 0.0) {
- Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
- ct_a[1] = ct_alarge;
- ct_alen = 2;
- negate = -cdxtail;
- Two_Product(negate, bdy, ct_blarge, ct_b[0]);
- ct_b[1] = ct_blarge;
- ct_blen = 2;
- }
- else {
- Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
- Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
- Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, ct_alarge, ct_a[2], ct_a[1],
- ct_a[0]);
- ct_a[3] = ct_alarge;
- ct_alen = 4;
- Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
- Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
- Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, ct_blarge, ct_b[2], ct_b[1],
- ct_b[0]);
- ct_b[3] = ct_blarge;
- ct_blen = 4;
- }
- }
-
- bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
- wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
- wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
- wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
-
- if (adheighttail != 0.0) {
- vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdheighttail != 0.0) {
- vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdheighttail != 0.0) {
- vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- if (adxtail != 0.0) {
- if (bdytail != 0.0) {
- Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
- Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (cdheighttail != 0.0) {
- Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- if (cdytail != 0.0) {
- negate = -adxtail;
- Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
- Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (bdheighttail != 0.0) {
- Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- }
- if (bdxtail != 0.0) {
- if (cdytail != 0.0) {
- Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
- Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (adheighttail != 0.0) {
- Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- if (adytail != 0.0) {
- negate = -bdxtail;
- Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
- Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (cdheighttail != 0.0) {
- Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- }
- if (cdxtail != 0.0) {
- if (adytail != 0.0) {
- Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
- Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (bdheighttail != 0.0) {
- Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- if (bdytail != 0.0) {
- negate = -cdxtail;
- Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
- Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- if (adheighttail != 0.0) {
- Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail, u3, u[2], u[1], u[0]);
- u[3] = u3;
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- }
- }
-
- if (adheighttail != 0.0) {
- wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (bdheighttail != 0.0) {
- wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
- if (cdheighttail != 0.0) {
- wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
- finswap = finnow;
- finnow = finother;
- finother = finswap;
- }
-
- return finnow[finlength - 1];
-}
-
-REAL orient3d(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd,
- REAL aheight, REAL bheight, REAL cheight, REAL dheight) {
- REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
- REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
- REAL det;
- REAL permanent, errbound;
-
- m->orient3dcount++;
-
- adx = pa[0] - pd[0];
- bdx = pb[0] - pd[0];
- cdx = pc[0] - pd[0];
- ady = pa[1] - pd[1];
- bdy = pb[1] - pd[1];
- cdy = pc[1] - pd[1];
- adheight = aheight - dheight;
- bdheight = bheight - dheight;
- cdheight = cheight - dheight;
-
- bdxcdy = bdx * cdy;
- cdxbdy = cdx * bdy;
-
- cdxady = cdx * ady;
- adxcdy = adx * cdy;
-
- adxbdy = adx * bdy;
- bdxady = bdx * ady;
-
- det = adheight * (bdxcdy - cdxbdy) + bdheight * (cdxady - adxcdy) + cdheight * (adxbdy - bdxady);
-
- if (b->noexact) {
- return det;
- }
-
- permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
- + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
- + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
- errbound = o3derrboundA * permanent;
- if ((det > errbound) || (-det > errbound)) {
- return det;
- }
-
- return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight, permanent);
-}
-
-/*****************************************************************************/
-/* */
-/* nonregular() Return a positive value if the point pd is incompatible */
-/* with the circle or plane passing through pa, pb, and pc */
-/* (meaning that pd is inside the circle or below the */
-/* plane); a negative value if it is compatible; and zero if */
-/* the four points are cocircular/coplanar. The points pa, */
-/* pb, and pc must be in counterclockwise order, or the sign */
-/* of the result will be reversed. */
-/* */
-/* If the -w switch is used, the points are lifted onto the parabolic */
-/* lifting map, then they are dropped according to their weights, then the */
-/* 3D orientation test is applied. If the -W switch is used, the points' */
-/* heights are already provided, so the 3D orientation test is applied */
-/* directly. If neither switch is used, the incircle test is applied. */
-/* */
-/*****************************************************************************/
-
-REAL nonregular(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd) {
- if (b->weighted == 0) {
- return incircle(m, b, pa, pb, pc, pd);
- }
- else if (b->weighted == 1) {
- return orient3d(m, b, pa, pb, pc, pd, pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
- pb[0] * pb[0] + pb[1] * pb[1] - pb[2], pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
- pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
- }
- else {
- return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* findcircumcenter() Find the circumcenter of a triangle. */
-/* */
-/* The result is returned both in terms of x-y coordinates and xi-eta */
-/* (barycentric) coordinates. The xi-eta coordinate system is defined in */
-/* terms of the triangle: the origin of the triangle is the origin of the */
-/* coordinate system; the destination of the triangle is one unit along the */
-/* xi axis; and the apex of the triangle is one unit along the eta axis. */
-/* This procedure also returns the square of the length of the triangle's */
-/* shortest edge. */
-/* */
-/*****************************************************************************/
-
-void findcircumcenter(struct mesh *m, struct behavior *b, vertex torg, vertex tdest, vertex tapex,
- vertex circumcenter, REAL *xi, REAL *eta, int offcenter) {
- REAL xdo, ydo, xao, yao;
- REAL dodist, aodist, dadist;
- REAL denominator;
- REAL dx, dy, dxoff, dyoff;
-
- m->circumcentercount++;
-
- /* Compute the circumcenter of the triangle. */
- xdo = tdest[0] - torg[0];
- ydo = tdest[1] - torg[1];
- xao = tapex[0] - torg[0];
- yao = tapex[1] - torg[1];
- dodist = xdo * xdo + ydo * ydo;
- aodist = xao * xao + yao * yao;
- dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0])
- + (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
- if (b->noexact) {
- denominator = 0.5 / (xdo * yao - xao * ydo);
- }
- else {
- /* Use the counterclockwise() routine to ensure a positive (and */
- /* reasonably accurate) result, avoiding any possibility of */
- /* division by zero. */
- denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
- /* Don't count the above as an orientation test. */
- m->counterclockcount--;
- }
- dx = (yao * dodist - ydo * aodist) * denominator;
- dy = (xdo * aodist - xao * dodist) * denominator;
-
- /* Find the (squared) length of the triangle's shortest edge. This */
- /* serves as a conservative estimate of the insertion radius of the */
- /* circumcenter's parent. The estimate is used to ensure that */
- /* the algorithm terminates even if very small angles appear in */
- /* the input PSLG. */
- if ((dodist < aodist) && (dodist < dadist)) {
- if (offcenter && (b->offconstant > 0.0)) {
- /* Find the position of the off-center, as described by Alper Ungor. */
- dxoff = 0.5 * xdo - b->offconstant * ydo;
- dyoff = 0.5 * ydo + b->offconstant * xdo;
- /* If the off-center is closer to the origin than the */
- /* circumcenter, use the off-center instead. */
- if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
- dx = dxoff;
- dy = dyoff;
- }
- }
- }
- else if (aodist < dadist) {
- if (offcenter && (b->offconstant > 0.0)) {
- dxoff = 0.5 * xao + b->offconstant * yao;
- dyoff = 0.5 * yao - b->offconstant * xao;
- /* If the off-center is closer to the origin than the */
- /* circumcenter, use the off-center instead. */
- if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
- dx = dxoff;
- dy = dyoff;
- }
- }
- }
- else {
- if (offcenter && (b->offconstant > 0.0)) {
- dxoff = 0.5 * (tapex[0] - tdest[0]) - b->offconstant * (tapex[1] - tdest[1]);
- dyoff = 0.5 * (tapex[1] - tdest[1]) + b->offconstant * (tapex[0] - tdest[0]);
- /* If the off-center is closer to the destination than the */
- /* circumcenter, use the off-center instead. */
- if (dxoff * dxoff + dyoff * dyoff < (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
- dx = xdo + dxoff;
- dy = ydo + dyoff;
- }
- }
- }
-
- circumcenter[0] = torg[0] + dx;
- circumcenter[1] = torg[1] + dy;
-
- /* To interpolate vertex attributes for the new vertex inserted at */
- /* the circumcenter, define a coordinate system with a xi-axis, */
- /* directed from the triangle's origin to its destination, and */
- /* an eta-axis, directed from its origin to its apex. */
- /* Calculate the xi and eta coordinates of the circumcenter. */
- *xi = (yao * dx - xao * dy) * (2.0 * denominator);
- *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
-}
-
-/** **/
-/** **/
-/********* Geometric primitives end here *********/
-
-/*****************************************************************************/
-/* */
-/* triangleinit() Initialize some variables. */
-/* */
-/*****************************************************************************/
-
-void triangleinit(struct mesh *m) {
- poolzero(&m->vertices);
- poolzero(&m->triangles);
- poolzero(&m->subsegs);
- poolzero(&m->viri);
- poolzero(&m->badsubsegs);
- poolzero(&m->badtriangles);
- poolzero(&m->flipstackers);
- poolzero(&m->splaynodes);
-
- m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
- m->undeads = 0; /* No eliminated input vertices yet. */
- m->samples = 1; /* Point location should take at least one sample. */
- m->checksegments = 0; /* There are no segments in the triangulation yet. */
- m->checkquality = 0; /* The quality triangulation stage has not begun. */
- m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
- m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
- randomseed = 1;
-
- exactinit(); /* Initialize exact arithmetic constants. */
-}
-
-/*****************************************************************************/
-/* */
-/* randomnation() Generate a random number between 0 and `choices' - 1. */
-/* */
-/* This is a simple linear congruential random number generator. Hence, it */
-/* is a bad random number generator, but good enough for most randomized */
-/* geometric algorithms. */
-/* */
-/*****************************************************************************/
-
-unsigned long randomnation(unsigned int choices) {
- randomseed = (randomseed * 1366l + 150889l) % 714025l;
- return randomseed / (714025l / choices + 1);
-}
-
-/********* Point location routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* makevertexmap() Construct a mapping from vertices to triangles to */
-/* improve the speed of point location for segment */
-/* insertion. */
-/* */
-/* Traverses all the triangles, and provides each corner of each triangle */
-/* with a pointer to that triangle. Of course, pointers will be */
-/* overwritten by other pointers because (almost) each vertex is a corner */
-/* of several triangles, but in the end every vertex will point to some */
-/* triangle that contains it. */
-/* */
-/*****************************************************************************/
-
-void makevertexmap(struct mesh *m, struct behavior *b) {
- struct otri triangleloop;
- vertex triorg;
-
- if (b->verbose) {
- printf(" Constructing mapping from vertices to triangles.\n");
- }
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- while (triangleloop.tri != (triangle *) NULL) {
- /* Check all three vertices of the triangle. */
- for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
- org(triangleloop, triorg);
- setvertex2tri(triorg, encode(triangleloop));
- }
- triangleloop.tri = triangletraverse(m);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* preciselocate() Find a triangle or edge containing a given point. */
-/* */
-/* Begins its search from `searchtri'. It is important that `searchtri' */
-/* be a handle with the property that `searchpoint' is strictly to the left */
-/* of the edge denoted by `searchtri', or is collinear with that edge and */
-/* does not intersect that edge. (In particular, `searchpoint' should not */
-/* be the origin or destination of that edge.) */
-/* */
-/* These conditions are imposed because preciselocate() is normally used in */
-/* one of two situations: */
-/* */
-/* (1) To try to find the location to insert a new point. Normally, we */
-/* know an edge that the point is strictly to the left of. In the */
-/* incremental Delaunay algorithm, that edge is a bounding box edge. */
-/* In Ruppert's Delaunay refinement algorithm for quality meshing, */
-/* that edge is the shortest edge of the triangle whose circumcenter */
-/* is being inserted. */
-/* */
-/* (2) To try to find an existing point. In this case, any edge on the */
-/* convex hull is a good starting edge. You must screen out the */
-/* possibility that the vertex sought is an endpoint of the starting */
-/* edge before you call preciselocate(). */
-/* */
-/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
-/* */
-/* This implementation differs from that given by Guibas and Stolfi. It */
-/* walks from triangle to triangle, crossing an edge only if `searchpoint' */
-/* is on the other side of the line containing that edge. After entering */
-/* a triangle, there are two edges by which one can leave that triangle. */
-/* If both edges are valid (`searchpoint' is on the other side of both */
-/* edges), one of the two is chosen by drawing a line perpendicular to */
-/* the entry edge (whose endpoints are `forg' and `fdest') passing through */
-/* `fapex'. Depending on which side of this perpendicular `searchpoint' */
-/* falls on, an exit edge is chosen. */
-/* */
-/* This implementation is empirically faster than the Guibas and Stolfi */
-/* point location routine (which I originally used), which tends to spiral */
-/* in toward its target. */
-/* */
-/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
-/* is a handle whose origin is the existing vertex. */
-/* */
-/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
-/* handle whose primary edge is the edge on which the point lies. */
-/* */
-/* Returns INTRIANGLE if the point lies strictly within a triangle. */
-/* `searchtri' is a handle on the triangle that contains the point. */
-/* */
-/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
-/* handle whose primary edge the point is to the right of. This might */
-/* occur when the circumcenter of a triangle falls just slightly outside */
-/* the mesh due to floating-point roundoff error. It also occurs when */
-/* seeking a hole or region point that a foolish user has placed outside */
-/* the mesh. */
-/* */
-/* If `stopatsubsegment' is nonzero, the search will stop if it tries to */
-/* walk through a subsegment, and will return OUTSIDE. */
-/* */
-/* WARNING: This routine is designed for convex triangulations, and will */
-/* not generally work after the holes and concavities have been carved. */
-/* However, it can still be used to find the circumcenter of a triangle, as */
-/* long as the search is begun from the triangle in question. */
-/* */
-/*****************************************************************************/
-
-enum locateresult preciselocate(struct mesh *m, struct behavior *b, vertex searchpoint,
- struct otri *searchtri, int stopatsubsegment) {
- struct otri backtracktri;
- struct osub checkedge;
- vertex forg, fdest, fapex;
- REAL orgorient, destorient;
- int moveleft;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (b->verbose > 2) {
- printf(" Searching for point (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
- }
- /* Where are we? */
- org(*searchtri, forg);
- dest(*searchtri, fdest);
- apex(*searchtri, fapex);
- while (1) {
- if (b->verbose > 2) {
- printf(
- " At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
- }
- /* Check whether the apex is the point we seek. */
- if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
- lprevself(*searchtri);
- return ONVERTEX;
- }
- /* Does the point lie on the other side of the line defined by the */
- /* triangle edge opposite the triangle's destination? */
- destorient = counterclockwise(m, b, forg, fapex, searchpoint);
- /* Does the point lie on the other side of the line defined by the */
- /* triangle edge opposite the triangle's origin? */
- orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
- if (destorient > 0.0) {
- if (orgorient > 0.0) {
- /* Move left if the inner product of (fapex - searchpoint) and */
- /* (fdest - forg) is positive. This is equivalent to drawing */
- /* a line perpendicular to the line (forg, fdest) and passing */
- /* through `fapex', and determining which side of this line */
- /* `searchpoint' falls on. */
- moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0])
- + (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
- }
- else {
- moveleft = 1;
- }
- }
- else {
- if (orgorient > 0.0) {
- moveleft = 0;
- }
- else {
- /* The point we seek must be on the boundary of or inside this */
- /* triangle. */
- if (destorient == 0.0) {
- lprevself(*searchtri);
- return ONEDGE;
- }
- if (orgorient == 0.0) {
- lnextself(*searchtri);
- return ONEDGE;
- }
- return INTRIANGLE;
- }
- }
-
- /* Move to another triangle. Leave a trace `backtracktri' in case */
- /* floating-point roundoff or some such bogey causes us to walk */
- /* off a boundary of the triangulation. */
- if (moveleft) {
- lprev(*searchtri, backtracktri);
- fdest = fapex;
- }
- else {
- lnext(*searchtri, backtracktri);
- forg = fapex;
- }
- sym(backtracktri, *searchtri);
-
- if (m->checksegments && stopatsubsegment) {
- /* Check for walking through a subsegment. */
- tspivot(backtracktri, checkedge);
- if (checkedge.ss != m->dummysub) {
- /* Go back to the last triangle. */
- otricopy(backtracktri, *searchtri);
- return OUTSIDE;
- }
- }
- /* Check for walking right out of the triangulation. */
- if (searchtri->tri == m->dummytri) {
- /* Go back to the last triangle. */
- otricopy(backtracktri, *searchtri);
- return OUTSIDE;
- }
-
- apex(*searchtri, fapex);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* locate() Find a triangle or edge containing a given point. */
-/* */
-/* Searching begins from one of: the input `searchtri', a recently */
-/* encountered triangle `recenttri', or from a triangle chosen from a */
-/* random sample. The choice is made by determining which triangle's */
-/* origin is closest to the point we are searching for. Normally, */
-/* `searchtri' should be a handle on the convex hull of the triangulation. */
-/* */
-/* Details on the random sampling method can be found in the Mucke, Saias, */
-/* and Zhu paper cited in the header of this code. */
-/* */
-/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
-/* */
-/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
-/* is a handle whose origin is the existing vertex. */
-/* */
-/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
-/* handle whose primary edge is the edge on which the point lies. */
-/* */
-/* Returns INTRIANGLE if the point lies strictly within a triangle. */
-/* `searchtri' is a handle on the triangle that contains the point. */
-/* */
-/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
-/* handle whose primary edge the point is to the right of. This might */
-/* occur when the circumcenter of a triangle falls just slightly outside */
-/* the mesh due to floating-point roundoff error. It also occurs when */
-/* seeking a hole or region point that a foolish user has placed outside */
-/* the mesh. */
-/* */
-/* WARNING: This routine is designed for convex triangulations, and will */
-/* not generally work after the holes and concavities have been carved. */
-/* */
-/*****************************************************************************/
-
-enum locateresult locate(struct mesh *m, struct behavior *b, vertex searchpoint,
- struct otri *searchtri) {
- VOID **sampleblock;
- char *firsttri;
- struct otri sampletri;
- vertex torg, tdest;
- unsigned long alignptr;
- REAL searchdist, dist;
- REAL ahead;
- long samplesperblock, totalsamplesleft, samplesleft;
- long population, totalpopulation;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (b->verbose > 2) {
- printf(
- " Randomly sampling for a triangle near point (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
- }
- /* Record the distance from the suggested starting triangle to the */
- /* point we seek. */
- org(*searchtri, torg);
- searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
- if (b->verbose > 2) {
- printf(" Boundary triangle has origin (%.12g, %.12g).\n", torg[0], torg[1]);
- }
-
- /* If a recently encountered triangle has been recorded and has not been */
- /* deallocated, test it as a good starting point. */
- if (m->recenttri.tri != (triangle *) NULL) {
- if (!deadtri(m->recenttri.tri)) {
- org(m->recenttri, torg);
- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
- otricopy(m->recenttri, *searchtri);
- return ONVERTEX;
- }
- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
- if (dist < searchdist) {
- otricopy(m->recenttri, *searchtri);
- searchdist = dist;
- if (b->verbose > 2) {
- printf(
- " Choosing recent triangle with origin (%.12g, %.12g).\n", torg[0], torg[1]);
- }
- }
- }
- }
-
- /* The number of random samples taken is proportional to the cube root of */
- /* the number of triangles in the mesh. The next bit of code assumes */
- /* that the number of triangles increases monotonically (or at least */
- /* doesn't decrease enough to matter). */
- while (SAMPLEFACTOR * m->samples * m->samples * m->samples < m->triangles.items) {
- m->samples++;
- }
-
- /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples */
- /* from each block of triangles (except the first)--until we meet the */
- /* sample quota. The ceiling means that blocks at the end might be */
- /* neglected, but I don't care. */
- samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
- /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
- /* from the first block of triangles. */
- samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) / m->triangles.maxitems + 1;
- totalsamplesleft = m->samples;
- population = m->triangles.itemsfirstblock;
- totalpopulation = m->triangles.maxitems;
- sampleblock = m->triangles.firstblock;
- sampletri.orient = 0;
- while (totalsamplesleft > 0) {
- /* If we're in the last block, `population' needs to be corrected. */
- if (population > totalpopulation) {
- population = totalpopulation;
- }
- /* Find a pointer to the first triangle in the block. */
- alignptr = (unsigned long) (sampleblock + 1);
- firsttri = (char *) (alignptr + (unsigned long) m->triangles.alignbytes
- - (alignptr % (unsigned long) m->triangles.alignbytes));
-
- /* Choose `samplesleft' randomly sampled triangles in this block. */
- do {
- sampletri.tri = (triangle *) (firsttri
- + (randomnation((unsigned int) population) * m->triangles.itembytes));
- if (!deadtri(sampletri.tri)) {
- org(sampletri, torg);
- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
- + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
- if (dist < searchdist) {
- otricopy(sampletri, *searchtri);
- searchdist = dist;
- if (b->verbose > 2) {
- printf(" Choosing triangle with origin (%.12g, %.12g).\n", torg[0], torg[1]);
- }
- }
- }
-
- samplesleft--;
- totalsamplesleft--;
- } while ((samplesleft > 0) && (totalsamplesleft > 0));
-
- if (totalsamplesleft > 0) {
- sampleblock = (VOID **) *sampleblock;
- samplesleft = samplesperblock;
- totalpopulation -= population;
- population = TRIPERBLOCK;
- }
- }
-
- /* Where are we? */
- org(*searchtri, torg);
- dest(*searchtri, tdest);
- /* Check the starting triangle's vertices. */
- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
- return ONVERTEX;
- }
- if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
- lnextself(*searchtri);
- return ONVERTEX;
- }
- /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
- ahead = counterclockwise(m, b, torg, tdest, searchpoint);
- if (ahead < 0.0) {
- /* Turn around so that `searchpoint' is to the left of the */
- /* edge specified by `searchtri'. */
- symself(*searchtri);
- }
- else if (ahead == 0.0) {
- /* Check if `searchpoint' is between `torg' and `tdest'. */
- if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
- && ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
- return ONEDGE;
- }
- }
- return preciselocate(m, b, searchpoint, searchtri, 0);
-}
-
-/** **/
-/** **/
-/********* Point location routines end here *********/
-
-/********* Mesh transformation routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* insertsubseg() Create a new subsegment and insert it between two */
-/* triangles. */
-/* */
-/* The new subsegment is inserted at the edge described by the handle */
-/* `tri'. Its vertices are properly initialized. The marker `subsegmark' */
-/* is applied to the subsegment and, if appropriate, its vertices. */
-/* */
-/*****************************************************************************/
-
-void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri, int subsegmark) {
- struct otri oppotri;
- struct osub newsubseg;
- vertex triorg, tridest;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- org(*tri, triorg);
- dest(*tri, tridest);
- /* Mark vertices if possible. */
- if (vertexmark(triorg) == 0) {
- setvertexmark(triorg, subsegmark);
- }
- if (vertexmark(tridest) == 0) {
- setvertexmark(tridest, subsegmark);
- }
- /* Check if there's already a subsegment here. */
- tspivot(*tri, newsubseg);
- if (newsubseg.ss == m->dummysub) {
- /* Make new subsegment and initialize its vertices. */
- makesubseg(m, &newsubseg);
- setsorg(newsubseg, tridest);
- setsdest(newsubseg, triorg);
- setsegorg(newsubseg, tridest);
- setsegdest(newsubseg, triorg);
- /* Bond new subsegment to the two triangles it is sandwiched between. */
- /* Note that the facing triangle `oppotri' might be equal to */
- /* `dummytri' (outer space), but the new subsegment is bonded to it */
- /* all the same. */
- tsbond(*tri, newsubseg);
- sym(*tri, oppotri);
- ssymself(newsubseg);
- tsbond(oppotri, newsubseg);
- setmark(newsubseg, subsegmark);
- if (b->verbose > 2) {
- printf(" Inserting new ");
- printsubseg(m, b, &newsubseg);
- }
- }
- else {
- if (mark(newsubseg) == 0) {
- setmark(newsubseg, subsegmark);
- }
- }
-}
-
-/*****************************************************************************/
-/* */
-/* Terminology */
-/* */
-/* A "local transformation" replaces a small set of triangles with another */
-/* set of triangles. This may or may not involve inserting or deleting a */
-/* vertex. */
-/* */
-/* The term "casing" is used to describe the set of triangles that are */
-/* attached to the triangles being transformed, but are not transformed */
-/* themselves. Think of the casing as a fixed hollow structure inside */
-/* which all the action happens. A "casing" is only defined relative to */
-/* a single transformation; each occurrence of a transformation will */
-/* involve a different casing. */
-/* */
-/*****************************************************************************/
-
-/*****************************************************************************/
-/* */
-/* flip() Transform two triangles to two different triangles by flipping */
-/* an edge counterclockwise within a quadrilateral. */
-/* */
-/* Imagine the original triangles, abc and bad, oriented so that the */
-/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
-/* and the vertex a on the right. The vertex c lies below the edge, and */
-/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
-/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
-/* */
-/* The triangles abc and bad are deleted and replaced by the triangles cdb */
-/* and dca. The triangles that represent abc and bad are NOT deallocated; */
-/* they are reused for dca and cdb, respectively. Hence, any handles that */
-/* may have held the original triangles are still valid, although not */
-/* directed as they were before. */
-/* */
-/* Upon completion of this routine, the `flipedge' handle holds the edge */
-/* dc of triangle dca, and is directed down, from vertex d to vertex c. */
-/* (Hence, the two triangles have rotated counterclockwise.) */
-/* */
-/* WARNING: This transformation is geometrically valid only if the */
-/* quadrilateral adbc is convex. Furthermore, this transformation is */
-/* valid only if there is not a subsegment between the triangles abc and */
-/* bad. This routine does not check either of these preconditions, and */
-/* it is the responsibility of the calling routine to ensure that they are */
-/* met. If they are not, the streets shall be filled with wailing and */
-/* gnashing of teeth. */
-/* */
-/*****************************************************************************/
-
-void flip(struct mesh *m, struct behavior *b, struct otri *flipedge) {
- struct otri botleft, botright;
- struct otri topleft, topright;
- struct otri top;
- struct otri botlcasing, botrcasing;
- struct otri toplcasing, toprcasing;
- struct osub botlsubseg, botrsubseg;
- struct osub toplsubseg, toprsubseg;
- vertex leftvertex, rightvertex, botvertex;
- vertex farvertex;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- /* Identify the vertices of the quadrilateral. */
- org(*flipedge, rightvertex);
- dest(*flipedge, leftvertex);
- apex(*flipedge, botvertex);
- sym(*flipedge, top);
-#ifdef SELF_CHECK
- if (top.tri == m->dummytri)
- {
- printf("Internal error in flip(): Attempt to flip on boundary.\n");
- lnextself(*flipedge);
- return;
- }
- if (m->checksegments)
- {
- tspivot(*flipedge, toplsubseg);
- if (toplsubseg.ss != m->dummysub)
- {
- printf("Internal error in flip(): Attempt to flip a segment.\n");
- lnextself(*flipedge);
- return;
- }
- }
-#endif /* SELF_CHECK */
- apex(top, farvertex);
-
- /* Identify the casing of the quadrilateral. */
- lprev(top, topleft);
- sym(topleft, toplcasing);
- lnext(top, topright);
- sym(topright, toprcasing);
- lnext(*flipedge, botleft);
- sym(botleft, botlcasing);
- lprev(*flipedge, botright);
- sym(botright, botrcasing);
- /* Rotate the quadrilateral one-quarter turn counterclockwise. */
- bond(topleft, botlcasing);
- bond(botleft, botrcasing);
- bond(botright, toprcasing);
- bond(topright, toplcasing);
-
- if (m->checksegments) {
- /* Check for subsegments and rebond them to the quadrilateral. */
- tspivot(topleft, toplsubseg);
- tspivot(botleft, botlsubseg);
- tspivot(botright, botrsubseg);
- tspivot(topright, toprsubseg);
- if (toplsubseg.ss == m->dummysub) {
- tsdissolve(topright);
- }
- else {
- tsbond(topright, toplsubseg);
- }
- if (botlsubseg.ss == m->dummysub) {
- tsdissolve(topleft);
- }
- else {
- tsbond(topleft, botlsubseg);
- }
- if (botrsubseg.ss == m->dummysub) {
- tsdissolve(botleft);
- }
- else {
- tsbond(botleft, botrsubseg);
- }
- if (toprsubseg.ss == m->dummysub) {
- tsdissolve(botright);
- }
- else {
- tsbond(botright, toprsubseg);
- }
- }
-
- /* New vertex assignments for the rotated quadrilateral. */
- setorg(*flipedge, farvertex);
- setdest(*flipedge, botvertex);
- setapex(*flipedge, rightvertex);
- setorg(top, botvertex);
- setdest(top, farvertex);
- setapex(top, leftvertex);
- if (b->verbose > 2) {
- printf(" Edge flip results in left ");
- printtriangle(m, b, &top);
- printf(" and right ");
- printtriangle(m, b, flipedge);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* unflip() Transform two triangles to two different triangles by */
-/* flipping an edge clockwise within a quadrilateral. Reverses */
-/* the flip() operation so that the data structures representing */
-/* the triangles are back where they were before the flip(). */
-/* */
-/* Imagine the original triangles, abc and bad, oriented so that the */
-/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
-/* and the vertex a on the right. The vertex c lies below the edge, and */
-/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
-/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
-/* */
-/* The triangles abc and bad are deleted and replaced by the triangles cdb */
-/* and dca. The triangles that represent abc and bad are NOT deallocated; */
-/* they are reused for cdb and dca, respectively. Hence, any handles that */
-/* may have held the original triangles are still valid, although not */
-/* directed as they were before. */
-/* */
-/* Upon completion of this routine, the `flipedge' handle holds the edge */
-/* cd of triangle cdb, and is directed up, from vertex c to vertex d. */
-/* (Hence, the two triangles have rotated clockwise.) */
-/* */
-/* WARNING: This transformation is geometrically valid only if the */
-/* quadrilateral adbc is convex. Furthermore, this transformation is */
-/* valid only if there is not a subsegment between the triangles abc and */
-/* bad. This routine does not check either of these preconditions, and */
-/* it is the responsibility of the calling routine to ensure that they are */
-/* met. If they are not, the streets shall be filled with wailing and */
-/* gnashing of teeth. */
-/* */
-/*****************************************************************************/
-
-void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge) {
- struct otri botleft, botright;
- struct otri topleft, topright;
- struct otri top;
- struct otri botlcasing, botrcasing;
- struct otri toplcasing, toprcasing;
- struct osub botlsubseg, botrsubseg;
- struct osub toplsubseg, toprsubseg;
- vertex leftvertex, rightvertex, botvertex;
- vertex farvertex;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- /* Identify the vertices of the quadrilateral. */
- org(*flipedge, rightvertex);
- dest(*flipedge, leftvertex);
- apex(*flipedge, botvertex);
- sym(*flipedge, top);
-#ifdef SELF_CHECK
- if (top.tri == m->dummytri)
- {
- printf("Internal error in unflip(): Attempt to flip on boundary.\n");
- lnextself(*flipedge);
- return;
- }
- if (m->checksegments)
- {
- tspivot(*flipedge, toplsubseg);
- if (toplsubseg.ss != m->dummysub)
- {
- printf("Internal error in unflip(): Attempt to flip a subsegment.\n");
- lnextself(*flipedge);
- return;
- }
- }
-#endif /* SELF_CHECK */
- apex(top, farvertex);
-
- /* Identify the casing of the quadrilateral. */
- lprev(top, topleft);
- sym(topleft, toplcasing);
- lnext(top, topright);
- sym(topright, toprcasing);
- lnext(*flipedge, botleft);
- sym(botleft, botlcasing);
- lprev(*flipedge, botright);
- sym(botright, botrcasing);
- /* Rotate the quadrilateral one-quarter turn clockwise. */
- bond(topleft, toprcasing);
- bond(botleft, toplcasing);
- bond(botright, botlcasing);
- bond(topright, botrcasing);
-
- if (m->checksegments) {
- /* Check for subsegments and rebond them to the quadrilateral. */
- tspivot(topleft, toplsubseg);
- tspivot(botleft, botlsubseg);
- tspivot(botright, botrsubseg);
- tspivot(topright, toprsubseg);
- if (toplsubseg.ss == m->dummysub) {
- tsdissolve(botleft);
- }
- else {
- tsbond(botleft, toplsubseg);
- }
- if (botlsubseg.ss == m->dummysub) {
- tsdissolve(botright);
- }
- else {
- tsbond(botright, botlsubseg);
- }
- if (botrsubseg.ss == m->dummysub) {
- tsdissolve(topright);
- }
- else {
- tsbond(topright, botrsubseg);
- }
- if (toprsubseg.ss == m->dummysub) {
- tsdissolve(topleft);
- }
- else {
- tsbond(topleft, toprsubseg);
- }
- }
-
- /* New vertex assignments for the rotated quadrilateral. */
- setorg(*flipedge, botvertex);
- setdest(*flipedge, farvertex);
- setapex(*flipedge, leftvertex);
- setorg(top, farvertex);
- setdest(top, botvertex);
- setapex(top, rightvertex);
- if (b->verbose > 2) {
- printf(" Edge unflip results in left ");
- printtriangle(m, b, flipedge);
- printf(" and right ");
- printtriangle(m, b, &top);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* insertvertex() Insert a vertex into a Delaunay triangulation, */
-/* performing flips as necessary to maintain the Delaunay */
-/* property. */
-/* */
-/* The point `insertvertex' is located. If `searchtri.tri' is not NULL, */
-/* the search for the containing triangle begins from `searchtri'. If */
-/* `searchtri.tri' is NULL, a full point location procedure is called. */
-/* If `insertvertex' is found inside a triangle, the triangle is split into */
-/* three; if `insertvertex' lies on an edge, the edge is split in two, */
-/* thereby splitting the two adjacent triangles into four. Edge flips are */
-/* used to restore the Delaunay property. If `insertvertex' lies on an */
-/* existing vertex, no action is taken, and the value DUPLICATEVERTEX is */
-/* returned. On return, `searchtri' is set to a handle whose origin is the */
-/* existing vertex. */
-/* */
-/* Normally, the parameter `splitseg' is set to NULL, implying that no */
-/* subsegment should be split. In this case, if `insertvertex' is found to */
-/* lie on a segment, no action is taken, and the value VIOLATINGVERTEX is */
-/* returned. On return, `searchtri' is set to a handle whose primary edge */
-/* is the violated subsegment. */
-/* */
-/* If the calling routine wishes to split a subsegment by inserting a */
-/* vertex in it, the parameter `splitseg' should be that subsegment. In */
-/* this case, `searchtri' MUST be the triangle handle reached by pivoting */
-/* from that subsegment; no point location is done. */
-/* */
-/* `segmentflaws' and `triflaws' are flags that indicate whether or not */
-/* there should be checks for the creation of encroached subsegments or bad */
-/* quality triangles. If a newly inserted vertex encroaches upon */
-/* subsegments, these subsegments are added to the list of subsegments to */
-/* be split if `segmentflaws' is set. If bad triangles are created, these */
-/* are added to the queue if `triflaws' is set. */
-/* */
-/* If a duplicate vertex or violated segment does not prevent the vertex */
-/* from being inserted, the return value will be ENCROACHINGVERTEX if the */
-/* vertex encroaches upon a subsegment (and checking is enabled), or */
-/* SUCCESSFULVERTEX otherwise. In either case, `searchtri' is set to a */
-/* handle whose origin is the newly inserted vertex. */
-/* */
-/* insertvertex() does not use flip() for reasons of speed; some */
-/* information can be reused from edge flip to edge flip, like the */
-/* locations of subsegments. */
-/* */
-/*****************************************************************************/
-
-enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b, vertex newvertex,
- struct otri *searchtri, struct osub *splitseg, int segmentflaws, int triflaws) {
- struct otri horiz;
- struct otri top;
- struct otri botleft, botright;
- struct otri topleft, topright;
- struct otri newbotleft, newbotright;
- struct otri newtopright;
- struct otri botlcasing, botrcasing;
- struct otri toplcasing, toprcasing;
- struct otri testtri;
- struct osub botlsubseg, botrsubseg;
- struct osub toplsubseg, toprsubseg;
- struct osub brokensubseg;
- struct osub checksubseg;
- struct osub rightsubseg;
- struct osub newsubseg;
- struct badsubseg *encroached;
- struct flipstacker *newflip;
- vertex first;
- vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
- vertex segmentorg, segmentdest;
- REAL attrib;
- REAL area;
- enum insertvertexresult success;
- enum locateresult intersect;
- int doflip;
- int mirrorflag;
- int enq;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by spivot() and tspivot(). */
-
- if (b->verbose > 1) {
- printf(" Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
- }
-
- if (splitseg == (struct osub *) NULL) {
- /* Find the location of the vertex to be inserted. Check if a good */
- /* starting triangle has already been provided by the caller. */
- if (searchtri->tri == m->dummytri) {
- /* Find a boundary triangle. */
- horiz.tri = m->dummytri;
- horiz.orient = 0;
- symself(horiz);
- /* Search for a triangle containing `newvertex'. */
- intersect = locate(m, b, newvertex, &horiz);
- }
- else {
- /* Start searching from the triangle provided by the caller. */
- otricopy(*searchtri, horiz);
- intersect = preciselocate(m, b, newvertex, &horiz, 1);
- }
- }
- else {
- /* The calling routine provides the subsegment in which */
- /* the vertex is inserted. */
- otricopy(*searchtri, horiz);
- intersect = ONEDGE;
- }
-
- if (intersect == ONVERTEX) {
- /* There's already a vertex there. Return in `searchtri' a triangle */
- /* whose origin is the existing vertex. */
- otricopy(horiz, *searchtri);
- otricopy(horiz, m->recenttri);
- return DUPLICATEVERTEX;
- }
- if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
- /* The vertex falls on an edge or boundary. */
- if (m->checksegments && (splitseg == (struct osub *) NULL)) {
- /* Check whether the vertex falls on a subsegment. */
- tspivot(horiz, brokensubseg);
- if (brokensubseg.ss != m->dummysub) {
- /* The vertex falls on a subsegment, and hence will not be inserted. */
- if (segmentflaws) {
- enq = b->nobisect != 2;
- if (enq && (b->nobisect == 1)) {
- /* This subsegment may be split only if it is an */
- /* internal boundary. */
- sym(horiz, testtri);
- enq = testtri.tri != m->dummytri;
- }
- if (enq) {
- /* Add the subsegment to the list of encroached subsegments. */
- encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
- encroached->encsubseg = sencode(brokensubseg);
- sorg(brokensubseg, encroached->subsegorg);
- sdest(brokensubseg, encroached->subsegdest);
- if (b->verbose > 2) {
- printf(" Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
- encroached->subsegorg[0], encroached->subsegorg[1],
- encroached->subsegdest[0], encroached->subsegdest[1]);
- }
- }
- }
- /* Return a handle whose primary edge contains the vertex, */
- /* which has not been inserted. */
- otricopy(horiz, *searchtri);
- otricopy(horiz, m->recenttri);
- return VIOLATINGVERTEX;
- }
- }
-
- /* Insert the vertex on an edge, dividing one triangle into two (if */
- /* the edge lies on a boundary) or two triangles into four. */
- lprev(horiz, botright);
- sym(botright, botrcasing);
- sym(horiz, topright);
- /* Is there a second triangle? (Or does this edge lie on a boundary?) */
- mirrorflag = topright.tri != m->dummytri;
- if (mirrorflag) {
- lnextself(topright);
- sym(topright, toprcasing);
- maketriangle(m, b, &newtopright);
- }
- else {
- /* Splitting a boundary edge increases the number of boundary edges. */
- m->hullsize++;
- }
- maketriangle(m, b, &newbotright);
-
- /* Set the vertices of changed and new triangles. */
- org(horiz, rightvertex);
- dest(horiz, leftvertex);
- apex(horiz, botvertex);
- setorg(newbotright, botvertex);
- setdest(newbotright, rightvertex);
- setapex(newbotright, newvertex);
- setorg(horiz, newvertex);
- for (i = 0; i < m->eextras; i++) {
- /* Set the element attributes of a new triangle. */
- setelemattribute(newbotright, i, elemattribute(botright, i));
- }
- if (b->vararea) {
- /* Set the area constraint of a new triangle. */
- setareabound(newbotright, areabound(botright));
- }
- if (mirrorflag) {
- dest(topright, topvertex);
- setorg(newtopright, rightvertex);
- setdest(newtopright, topvertex);
- setapex(newtopright, newvertex);
- setorg(topright, newvertex);
- for (i = 0; i < m->eextras; i++) {
- /* Set the element attributes of another new triangle. */
- setelemattribute(newtopright, i, elemattribute(topright, i));
- }
- if (b->vararea) {
- /* Set the area constraint of another new triangle. */
- setareabound(newtopright, areabound(topright));
- }
- }
-
- /* There may be subsegments that need to be bonded */
- /* to the new triangle(s). */
- if (m->checksegments) {
- tspivot(botright, botrsubseg);
- if (botrsubseg.ss != m->dummysub) {
- tsdissolve(botright);
- tsbond(newbotright, botrsubseg);
- }
- if (mirrorflag) {
- tspivot(topright, toprsubseg);
- if (toprsubseg.ss != m->dummysub) {
- tsdissolve(topright);
- tsbond(newtopright, toprsubseg);
- }
- }
- }
-
- /* Bond the new triangle(s) to the surrounding triangles. */
- bond(newbotright, botrcasing);
- lprevself(newbotright);
- bond(newbotright, botright);
- lprevself(newbotright);
- if (mirrorflag) {
- bond(newtopright, toprcasing);
- lnextself(newtopright);
- bond(newtopright, topright);
- lnextself(newtopright);
- bond(newtopright, newbotright);
- }
-
- if (splitseg != (struct osub *) NULL) {
- /* Split the subsegment into two. */
- setsdest(*splitseg, newvertex);
- segorg(*splitseg, segmentorg);
- segdest(*splitseg, segmentdest);
- ssymself(*splitseg);
- spivot(*splitseg, rightsubseg);
- insertsubseg(m, b, &newbotright, mark(*splitseg));
- tspivot(newbotright, newsubseg);
- setsegorg(newsubseg, segmentorg);
- setsegdest(newsubseg, segmentdest);
- sbond(*splitseg, newsubseg);
- ssymself(newsubseg);
- sbond(newsubseg, rightsubseg);
- ssymself(*splitseg);
- /* Transfer the subsegment's boundary marker to the vertex */
- /* if required. */
- if (vertexmark(newvertex) == 0) {
- setvertexmark(newvertex, mark(*splitseg));
- }
- }
-
- if (m->checkquality) {
- poolrestart(&m->flipstackers);
- m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
- m->lastflip->flippedtri = encode(horiz);
- m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
- }
-
-#ifdef SELF_CHECK
- if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(
- " Clockwise triangle prior to edge vertex insertion (bottom).\n");
- }
- if (mirrorflag)
- {
- if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle prior to edge vertex insertion (top).\n");
- }
- if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(
- " Clockwise triangle after edge vertex insertion (top right).\n");
- }
- if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(
- " Clockwise triangle after edge vertex insertion (top left).\n");
- }
- }
- if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(
- " Clockwise triangle after edge vertex insertion (bottom left).\n");
- }
- if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(
- " Clockwise triangle after edge vertex insertion (bottom right).\n");
- }
-#endif /* SELF_CHECK */
- if (b->verbose > 2) {
- printf(" Updating bottom left ");
- printtriangle(m, b, &botright);
- if (mirrorflag) {
- printf(" Updating top left ");
- printtriangle(m, b, &topright);
- printf(" Creating top right ");
- printtriangle(m, b, &newtopright);
- }
- printf(" Creating bottom right ");
- printtriangle(m, b, &newbotright);
- }
-
- /* Position `horiz' on the first edge to check for */
- /* the Delaunay property. */
- lnextself(horiz);
- }
- else {
- /* Insert the vertex in a triangle, splitting it into three. */
- lnext(horiz, botleft);
- lprev(horiz, botright);
- sym(botleft, botlcasing);
- sym(botright, botrcasing);
- maketriangle(m, b, &newbotleft);
- maketriangle(m, b, &newbotright);
-
- /* Set the vertices of changed and new triangles. */
- org(horiz, rightvertex);
- dest(horiz, leftvertex);
- apex(horiz, botvertex);
- setorg(newbotleft, leftvertex);
- setdest(newbotleft, botvertex);
- setapex(newbotleft, newvertex);
- setorg(newbotright, botvertex);
- setdest(newbotright, rightvertex);
- setapex(newbotright, newvertex);
- setapex(horiz, newvertex);
- for (i = 0; i < m->eextras; i++) {
- /* Set the element attributes of the new triangles. */
- attrib = elemattribute(horiz, i);
- setelemattribute(newbotleft, i, attrib);
- setelemattribute(newbotright, i, attrib);
- }
- if (b->vararea) {
- /* Set the area constraint of the new triangles. */
- area = areabound(horiz);
- setareabound(newbotleft, area);
- setareabound(newbotright, area);
- }
-
- /* There may be subsegments that need to be bonded */
- /* to the new triangles. */
- if (m->checksegments) {
- tspivot(botleft, botlsubseg);
- if (botlsubseg.ss != m->dummysub) {
- tsdissolve(botleft);
- tsbond(newbotleft, botlsubseg);
- }
- tspivot(botright, botrsubseg);
- if (botrsubseg.ss != m->dummysub) {
- tsdissolve(botright);
- tsbond(newbotright, botrsubseg);
- }
- }
-
- /* Bond the new triangles to the surrounding triangles. */
- bond(newbotleft, botlcasing);
- bond(newbotright, botrcasing);
- lnextself(newbotleft);
- lprevself(newbotright);
- bond(newbotleft, newbotright);
- lnextself(newbotleft);
- bond(botleft, newbotleft);
- lprevself(newbotright);
- bond(botright, newbotright);
-
- if (m->checkquality) {
- poolrestart(&m->flipstackers);
- m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
- m->lastflip->flippedtri = encode(horiz);
- m->lastflip->prevflip = (struct flipstacker *) NULL;
- }
-
-#ifdef SELF_CHECK
- if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle prior to vertex insertion.\n");
- }
- if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle after vertex insertion (top).\n");
- }
- if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle after vertex insertion (left).\n");
- }
- if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle after vertex insertion (right).\n");
- }
-#endif /* SELF_CHECK */
- if (b->verbose > 2) {
- printf(" Updating top ");
- printtriangle(m, b, &horiz);
- printf(" Creating left ");
- printtriangle(m, b, &newbotleft);
- printf(" Creating right ");
- printtriangle(m, b, &newbotright);
- }
- }
-
- /* The insertion is successful by default, unless an encroached */
- /* subsegment is found. */
- success = SUCCESSFULVERTEX;
- /* Circle around the newly inserted vertex, checking each edge opposite */
- /* it for the Delaunay property. Non-Delaunay edges are flipped. */
- /* `horiz' is always the edge being checked. `first' marks where to */
- /* stop circling. */
- org(horiz, first);
- rightvertex = first;
- dest(horiz, leftvertex);
- /* Circle until finished. */
- while (1) {
- /* By default, the edge will be flipped. */
- doflip = 1;
-
- if (m->checksegments) {
- /* Check for a subsegment, which cannot be flipped. */
- tspivot(horiz, checksubseg);
- if (checksubseg.ss != m->dummysub) {
- /* The edge is a subsegment and cannot be flipped. */
- doflip = 0;
-#ifndef CDT_ONLY
- if (segmentflaws)
- {
- /* Does the new vertex encroach upon this subsegment? */
- if (checkseg4encroach(m, b, &checksubseg))
- {
- success = ENCROACHINGVERTEX;
- }
- }
-#endif /* not CDT_ONLY */
- }
- }
-
- if (doflip) {
- /* Check if the edge is a boundary edge. */
- sym(horiz, top);
- if (top.tri == m->dummytri) {
- /* The edge is a boundary edge and cannot be flipped. */
- doflip = 0;
- }
- else {
- /* Find the vertex on the other side of the edge. */
- apex(top, farvertex);
- /* In the incremental Delaunay triangulation algorithm, any of */
- /* `leftvertex', `rightvertex', and `farvertex' could be vertices */
- /* of the triangular bounding box. These vertices must be */
- /* treated as if they are infinitely distant, even though their */
- /* "coordinates" are not. */
- if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2)
- || (leftvertex == m->infvertex3)) {
- /* `leftvertex' is infinitely distant. Check the convexity of */
- /* the boundary of the triangulation. 'farvertex' might be */
- /* infinite as well, but trust me, this same condition should */
- /* be applied. */
- doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex) > 0.0;
- }
- else if ((rightvertex == m->infvertex1) || (rightvertex == m->infvertex2)
- || (rightvertex == m->infvertex3)) {
- /* `rightvertex' is infinitely distant. Check the convexity of */
- /* the boundary of the triangulation. 'farvertex' might be */
- /* infinite as well, but trust me, this same condition should */
- /* be applied. */
- doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex) > 0.0;
- }
- else if ((farvertex == m->infvertex1) || (farvertex == m->infvertex2)
- || (farvertex == m->infvertex3)) {
- /* `farvertex' is infinitely distant and cannot be inside */
- /* the circumcircle of the triangle `horiz'. */
- doflip = 0;
- }
- else {
- /* Test whether the edge is locally Delaunay. */
- doflip = incircle(m, b, leftvertex, newvertex, rightvertex, farvertex) > 0.0;
- }
- if (doflip) {
- /* We made it! Flip the edge `horiz' by rotating its containing */
- /* quadrilateral (the two triangles adjacent to `horiz'). */
- /* Identify the casing of the quadrilateral. */
- lprev(top, topleft);
- sym(topleft, toplcasing);
- lnext(top, topright);
- sym(topright, toprcasing);
- lnext(horiz, botleft);
- sym(botleft, botlcasing);
- lprev(horiz, botright);
- sym(botright, botrcasing);
- /* Rotate the quadrilateral one-quarter turn counterclockwise. */
- bond(topleft, botlcasing);
- bond(botleft, botrcasing);
- bond(botright, toprcasing);
- bond(topright, toplcasing);
- if (m->checksegments) {
- /* Check for subsegments and rebond them to the quadrilateral. */
- tspivot(topleft, toplsubseg);
- tspivot(botleft, botlsubseg);
- tspivot(botright, botrsubseg);
- tspivot(topright, toprsubseg);
- if (toplsubseg.ss == m->dummysub) {
- tsdissolve(topright);
- }
- else {
- tsbond(topright, toplsubseg);
- }
- if (botlsubseg.ss == m->dummysub) {
- tsdissolve(topleft);
- }
- else {
- tsbond(topleft, botlsubseg);
- }
- if (botrsubseg.ss == m->dummysub) {
- tsdissolve(botleft);
- }
- else {
- tsbond(botleft, botrsubseg);
- }
- if (toprsubseg.ss == m->dummysub) {
- tsdissolve(botright);
- }
- else {
- tsbond(botright, toprsubseg);
- }
- }
- /* New vertex assignments for the rotated quadrilateral. */
- setorg(horiz, farvertex);
- setdest(horiz, newvertex);
- setapex(horiz, rightvertex);
- setorg(top, newvertex);
- setdest(top, farvertex);
- setapex(top, leftvertex);
- for (i = 0; i < m->eextras; i++) {
- /* Take the average of the two triangles' attributes. */
- attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
- setelemattribute(top, i, attrib);
- setelemattribute(horiz, i, attrib);
- }
- if (b->vararea) {
- if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
- area = -1.0;
- }
- else {
- /* Take the average of the two triangles' area constraints. */
- /* This prevents small area constraints from migrating a */
- /* long, long way from their original location due to flips. */
- area = 0.5 * (areabound(top) + areabound(horiz));
- }
- setareabound(top, area);
- setareabound(horiz, area);
- }
-
- if (m->checkquality) {
- newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
- newflip->flippedtri = encode(horiz);
- newflip->prevflip = m->lastflip;
- m->lastflip = newflip;
- }
-
-#ifdef SELF_CHECK
- if (newvertex != (vertex) NULL)
- {
- if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
- 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle prior to edge flip (bottom).\n");
- }
- /* The following test has been removed because constrainededge() */
- /* sometimes generates inverted triangles that insertvertex() */
- /* removes. */
- /*
- if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
- 0.0) {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle prior to edge flip (top).\n");
- }
- */
- if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
- 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle after edge flip (left).\n");
- }
- if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
- 0.0)
- {
- printf("Internal error in insertvertex():\n");
- printf(" Clockwise triangle after edge flip (right).\n");
- }
- }
-#endif /* SELF_CHECK */
- if (b->verbose > 2) {
- printf(" Edge flip results in left ");
- lnextself(topleft);
- printtriangle(m, b, &topleft);
- printf(" and right ");
- printtriangle(m, b, &horiz);
- }
- /* On the next iterations, consider the two edges that were */
- /* exposed (this is, are now visible to the newly inserted */
- /* vertex) by the edge flip. */
- lprevself(horiz);
- leftvertex = farvertex;
- }
- }
- }
- if (!doflip) {
- /* The handle `horiz' is accepted as locally Delaunay. */
-#ifndef CDT_ONLY
- if (triflaws)
- {
- /* Check the triangle `horiz' for quality. */
- testtriangle(m, b, &horiz);
- }
-#endif /* not CDT_ONLY */
- /* Look for the next edge around the newly inserted vertex. */
- lnextself(horiz);
- sym(horiz, testtri);
- /* Check for finishing a complete revolution about the new vertex, or */
- /* falling outside of the triangulation. The latter will happen */
- /* when a vertex is inserted at a boundary. */
- if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
- /* We're done. Return a triangle whose origin is the new vertex. */
- lnext(horiz, *searchtri);
- lnext(horiz, m->recenttri);
- return success;
- }
- /* Finish finding the next edge around the newly inserted vertex. */
- lnext(testtri, horiz);
- rightvertex = leftvertex;
- dest(horiz, leftvertex);
- }
- }
-}
-
-/********* Divide-and-conquer Delaunay triangulation begins here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* The divide-and-conquer bounding box */
-/* */
-/* I originally implemented the divide-and-conquer and incremental Delaunay */
-/* triangulations using the edge-based data structure presented by Guibas */
-/* and Stolfi. Switching to a triangle-based data structure doubled the */
-/* speed. However, I had to think of a few extra tricks to maintain the */
-/* elegance of the original algorithms. */
-/* */
-/* The "bounding box" used by my variant of the divide-and-conquer */
-/* algorithm uses one triangle for each edge of the convex hull of the */
-/* triangulation. These bounding triangles all share a common apical */
-/* vertex, which is represented by NULL and which represents nothing. */
-/* The bounding triangles are linked in a circular fan about this NULL */
-/* vertex, and the edges on the convex hull of the triangulation appear */
-/* opposite the NULL vertex. You might find it easiest to imagine that */
-/* the NULL vertex is a point in 3D space behind the center of the */
-/* triangulation, and that the bounding triangles form a sort of cone. */
-/* */
-/* This bounding box makes it easy to represent degenerate cases. For */
-/* instance, the triangulation of two vertices is a single edge. This edge */
-/* is represented by two bounding box triangles, one on each "side" of the */
-/* edge. These triangles are also linked together in a fan about the NULL */
-/* vertex. */
-/* */
-/* The bounding box also makes it easy to traverse the convex hull, as the */
-/* divide-and-conquer algorithm needs to do. */
-/* */
-/*****************************************************************************/
-
-/*****************************************************************************/
-/* */
-/* vertexsort() Sort an array of vertices by x-coordinate, using the */
-/* y-coordinate as a secondary key. */
-/* */
-/* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */
-/* the usual quicksort mistakes. */
-/* */
-/*****************************************************************************/
-
-void vertexsort(vertex *sortarray, int arraysize) {
- int left, right;
- int pivot;
- REAL pivotx, pivoty;
- vertex temp;
-
- if (arraysize == 2) {
- /* Recursive base case. */
- if ((sortarray[0][0] > sortarray[1][0])
- || ((sortarray[0][0] == sortarray[1][0]) && (sortarray[0][1] > sortarray[1][1]))) {
- temp = sortarray[1];
- sortarray[1] = sortarray[0];
- sortarray[0] = temp;
- }
- return;
- }
- /* Choose a random pivot to split the array. */
- pivot = (int) randomnation((unsigned int) arraysize);
- pivotx = sortarray[pivot][0];
- pivoty = sortarray[pivot][1];
- /* Split the array. */
- left = -1;
- right = arraysize;
- while (left < right) {
- /* Search for a vertex whose x-coordinate is too large for the left. */
- do {
- left++;
- } while ((left <= right)
- && ((sortarray[left][0] < pivotx)
- || ((sortarray[left][0] == pivotx) && (sortarray[left][1] < pivoty))));
- /* Search for a vertex whose x-coordinate is too small for the right. */
- do {
- right--;
- } while ((left <= right)
- && ((sortarray[right][0] > pivotx)
- || ((sortarray[right][0] == pivotx) && (sortarray[right][1] > pivoty))));
- if (left < right) {
- /* Swap the left and right vertices. */
- temp = sortarray[left];
- sortarray[left] = sortarray[right];
- sortarray[right] = temp;
- }
- }
- if (left > 1) {
- /* Recursively sort the left subset. */
- vertexsort(sortarray, left);
- }
- if (right < arraysize - 2) {
- /* Recursively sort the right subset. */
- vertexsort(&sortarray[right + 1], arraysize - right - 1);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* vertexmedian() An order statistic algorithm, almost. Shuffles an */
-/* array of vertices so that the first `median' vertices */
-/* occur lexicographically before the remaining vertices. */
-/* */
-/* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */
-/* if axis == 1. Very similar to the vertexsort() procedure, but runs in */
-/* randomized linear time. */
-/* */
-/*****************************************************************************/
-
-void vertexmedian(vertex *sortarray, int arraysize, int median, int axis) {
- int left, right;
- int pivot;
- REAL pivot1, pivot2;
- vertex temp;
-
- if (arraysize == 2) {
- /* Recursive base case. */
- if ((sortarray[0][axis] > sortarray[1][axis])
- || ((sortarray[0][axis] == sortarray[1][axis])
- && (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
- temp = sortarray[1];
- sortarray[1] = sortarray[0];
- sortarray[0] = temp;
- }
- return;
- }
- /* Choose a random pivot to split the array. */
- pivot = (int) randomnation((unsigned int) arraysize);
- pivot1 = sortarray[pivot][axis];
- pivot2 = sortarray[pivot][1 - axis];
- /* Split the array. */
- left = -1;
- right = arraysize;
- while (left < right) {
- /* Search for a vertex whose x-coordinate is too large for the left. */
- do {
- left++;
- } while ((left <= right)
- && ((sortarray[left][axis] < pivot1)
- || ((sortarray[left][axis] == pivot1) && (sortarray[left][1 - axis] < pivot2))));
- /* Search for a vertex whose x-coordinate is too small for the right. */
- do {
- right--;
- } while ((left <= right)
- && ((sortarray[right][axis] > pivot1)
- || ((sortarray[right][axis] == pivot1) && (sortarray[right][1 - axis] > pivot2))));
- if (left < right) {
- /* Swap the left and right vertices. */
- temp = sortarray[left];
- sortarray[left] = sortarray[right];
- sortarray[right] = temp;
- }
- }
- /* Unlike in vertexsort(), at most one of the following */
- /* conditionals is true. */
- if (left > median) {
- /* Recursively shuffle the left subset. */
- vertexmedian(sortarray, left, median, axis);
- }
- if (right < median - 1) {
- /* Recursively shuffle the right subset. */
- vertexmedian(&sortarray[right + 1], arraysize - right - 1, median - right - 1, axis);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* alternateaxes() Sorts the vertices as appropriate for the divide-and- */
-/* conquer algorithm with alternating cuts. */
-/* */
-/* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */
-/* For the base case, subsets containing only two or three vertices are */
-/* always sorted by x-coordinate. */
-/* */
-/*****************************************************************************/
-
-void alternateaxes(vertex *sortarray, int arraysize, int axis) {
- int divider;
-
- divider = arraysize >> 1;
- if (arraysize <= 3) {
- /* Recursive base case: subsets of two or three vertices will be */
- /* handled specially, and should always be sorted by x-coordinate. */
- axis = 0;
- }
- /* Partition with a horizontal or vertical cut. */
- vertexmedian(sortarray, arraysize, divider, axis);
- /* Recursively partition the subsets with a cross cut. */
- if (arraysize - divider >= 2) {
- if (divider >= 2) {
- alternateaxes(sortarray, divider, 1 - axis);
- }
- alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* mergehulls() Merge two adjacent Delaunay triangulations into a */
-/* single Delaunay triangulation. */
-/* */
-/* This is similar to the algorithm given by Guibas and Stolfi, but uses */
-/* a triangle-based, rather than edge-based, data structure. */
-/* */
-/* The algorithm walks up the gap between the two triangulations, knitting */
-/* them together. As they are merged, some of their bounding triangles */
-/* are converted into real triangles of the triangulation. The procedure */
-/* pulls each hull's bounding triangles apart, then knits them together */
-/* like the teeth of two gears. The Delaunay property determines, at each */
-/* step, whether the next "tooth" is a bounding triangle of the left hull */
-/* or the right. When a bounding triangle becomes real, its apex is */
-/* changed from NULL to a real vertex. */
-/* */
-/* Only two new triangles need to be allocated. These become new bounding */
-/* triangles at the top and bottom of the seam. They are used to connect */
-/* the remaining bounding triangles (those that have not been converted */
-/* into real triangles) into a single fan. */
-/* */
-/* On entry, `farleft' and `innerleft' are bounding triangles of the left */
-/* triangulation. The origin of `farleft' is the leftmost vertex, and */
-/* the destination of `innerleft' is the rightmost vertex of the */
-/* triangulation. Similarly, `innerright' and `farright' are bounding */
-/* triangles of the right triangulation. The origin of `innerright' and */
-/* destination of `farright' are the leftmost and rightmost vertices. */
-/* */
-/* On completion, the origin of `farleft' is the leftmost vertex of the */
-/* merged triangulation, and the destination of `farright' is the rightmost */
-/* vertex. */
-/* */
-/*****************************************************************************/
-
-void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft, struct otri *innerleft,
- struct otri *innerright, struct otri *farright, int axis) {
- struct otri leftcand, rightcand;
- struct otri baseedge;
- struct otri nextedge;
- struct otri sidecasing, topcasing, outercasing;
- struct otri checkedge;
- vertex innerleftdest;
- vertex innerrightorg;
- vertex innerleftapex, innerrightapex;
- vertex farleftpt, farrightpt;
- vertex farleftapex, farrightapex;
- vertex lowerleft, lowerright;
- vertex upperleft, upperright;
- vertex nextapex;
- vertex checkvertex;
- int changemade;
- int badedge;
- int leftfinished, rightfinished;
- triangle ptr; /* Temporary variable used by sym(). */
-
- dest(*innerleft, innerleftdest);
- apex(*innerleft, innerleftapex);
- org(*innerright, innerrightorg);
- apex(*innerright, innerrightapex);
- /* Special treatment for horizontal cuts. */
- if (b->dwyer && (axis == 1)) {
- org(*farleft, farleftpt);
- apex(*farleft, farleftapex);
- dest(*farright, farrightpt);
- apex(*farright, farrightapex);
- /* The pointers to the extremal vertices are shifted to point to the */
- /* topmost and bottommost vertex of each hull, rather than the */
- /* leftmost and rightmost vertices. */
- while (farleftapex[1] < farleftpt[1]) {
- lnextself(*farleft);
- symself(*farleft);
- farleftpt = farleftapex;
- apex(*farleft, farleftapex);
- }
- sym(*innerleft, checkedge);
- apex(checkedge, checkvertex);
- while (checkvertex[1] > innerleftdest[1]) {
- lnext(checkedge, *innerleft);
- innerleftapex = innerleftdest;
- innerleftdest = checkvertex;
- sym(*innerleft, checkedge);
- apex(checkedge, checkvertex);
- }
- while (innerrightapex[1] < innerrightorg[1]) {
- lnextself(*innerright);
- symself(*innerright);
- innerrightorg = innerrightapex;
- apex(*innerright, innerrightapex);
- }
- sym(*farright, checkedge);
- apex(checkedge, checkvertex);
- while (checkvertex[1] > farrightpt[1]) {
- lnext(checkedge, *farright);
- farrightapex = farrightpt;
- farrightpt = checkvertex;
- sym(*farright, checkedge);
- apex(checkedge, checkvertex);
- }
- }
- /* Find a line tangent to and below both hulls. */
- do {
- changemade = 0;
- /* Make innerleftdest the "bottommost" vertex of the left hull. */
- if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) > 0.0) {
- lprevself(*innerleft);
- symself(*innerleft);
- innerleftdest = innerleftapex;
- apex(*innerleft, innerleftapex);
- changemade = 1;
- }
- /* Make innerrightorg the "bottommost" vertex of the right hull. */
- if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) > 0.0) {
- lnextself(*innerright);
- symself(*innerright);
- innerrightorg = innerrightapex;
- apex(*innerright, innerrightapex);
- changemade = 1;
- }
- } while (changemade);
- /* Find the two candidates to be the next "gear tooth." */
- sym(*innerleft, leftcand);
- sym(*innerright, rightcand);
- /* Create the bottom new bounding triangle. */
- maketriangle(m, b, &baseedge);
- /* Connect it to the bounding boxes of the left and right triangulations. */
- bond(baseedge, *innerleft);
- lnextself(baseedge);
- bond(baseedge, *innerright);
- lnextself(baseedge);
- setorg(baseedge, innerrightorg);
- setdest(baseedge, innerleftdest);
- /* Apex is intentionally left NULL. */
- if (b->verbose > 2) {
- printf(" Creating base bounding ");
- printtriangle(m, b, &baseedge);
- }
- /* Fix the extreme triangles if necessary. */
- org(*farleft, farleftpt);
- if (innerleftdest == farleftpt) {
- lnext(baseedge, *farleft);
- }
- dest(*farright, farrightpt);
- if (innerrightorg == farrightpt) {
- lprev(baseedge, *farright);
- }
- /* The vertices of the current knitting edge. */
- lowerleft = innerleftdest;
- lowerright = innerrightorg;
- /* The candidate vertices for knitting. */
- apex(leftcand, upperleft);
- apex(rightcand, upperright);
- /* Walk up the gap between the two triangulations, knitting them together. */
- while (1) {
- /* Have we reached the top? (This isn't quite the right question, */
- /* because even though the left triangulation might seem finished now, */
- /* moving up on the right triangulation might reveal a new vertex of */
- /* the left triangulation. And vice-versa.) */
- leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <= 0.0;
- rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright) <= 0.0;
- if (leftfinished && rightfinished) {
- /* Create the top new bounding triangle. */
- maketriangle(m, b, &nextedge);
- setorg(nextedge, lowerleft);
- setdest(nextedge, lowerright);
- /* Apex is intentionally left NULL. */
- /* Connect it to the bounding boxes of the two triangulations. */
- bond(nextedge, baseedge);
- lnextself(nextedge);
- bond(nextedge, rightcand);
- lnextself(nextedge);
- bond(nextedge, leftcand);
- if (b->verbose > 2) {
- printf(" Creating top bounding ");
- printtriangle(m, b, &nextedge);
- }
- /* Special treatment for horizontal cuts. */
- if (b->dwyer && (axis == 1)) {
- org(*farleft, farleftpt);
- apex(*farleft, farleftapex);
- dest(*farright, farrightpt);
- apex(*farright, farrightapex);
- sym(*farleft, checkedge);
- apex(checkedge, checkvertex);
- /* The pointers to the extremal vertices are restored to the */
- /* leftmost and rightmost vertices (rather than topmost and */
- /* bottommost). */
- while (checkvertex[0] < farleftpt[0]) {
- lprev(checkedge, *farleft);
- farleftapex = farleftpt;
- farleftpt = checkvertex;
- sym(*farleft, checkedge);
- apex(checkedge, checkvertex);
- }
- while (farrightapex[0] > farrightpt[0]) {
- lprevself(*farright);
- symself(*farright);
- farrightpt = farrightapex;
- apex(*farright, farrightapex);
- }
- }
- return;
- }
- /* Consider eliminating edges from the left triangulation. */
- if (!leftfinished) {
- /* What vertex would be exposed if an edge were deleted? */
- lprev(leftcand, nextedge);
- symself(nextedge);
- apex(nextedge, nextapex);
- /* If nextapex is NULL, then no vertex would be exposed; the */
- /* triangulation would have been eaten right through. */
- if (nextapex != (vertex) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) > 0.0;
- while (badedge) {
- /* Eliminate the edge with an edge flip. As a result, the */
- /* left triangulation will have one more boundary triangle. */
- lnextself(nextedge);
- sym(nextedge, topcasing);
- lnextself(nextedge);
- sym(nextedge, sidecasing);
- bond(nextedge, topcasing);
- bond(leftcand, sidecasing);
- lnextself(leftcand);
- sym(leftcand, outercasing);
- lprevself(nextedge);
- bond(nextedge, outercasing);
- /* Correct the vertices to reflect the edge flip. */
- setorg(leftcand, lowerleft);
- setdest(leftcand, NULL);
- setapex(leftcand, nextapex);
- setorg(nextedge, NULL);
- setdest(nextedge, upperleft);
- setapex(nextedge, nextapex);
- /* Consider the newly exposed vertex. */
- upperleft = nextapex;
- /* What vertex would be exposed if another edge were deleted? */
- otricopy(sidecasing, nextedge);
- apex(nextedge, nextapex);
- if (nextapex != (vertex) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) > 0.0;
- }
- else {
- /* Avoid eating right through the triangulation. */
- badedge = 0;
- }
- }
- }
- }
- /* Consider eliminating edges from the right triangulation. */
- if (!rightfinished) {
- /* What vertex would be exposed if an edge were deleted? */
- lnext(rightcand, nextedge);
- symself(nextedge);
- apex(nextedge, nextapex);
- /* If nextapex is NULL, then no vertex would be exposed; the */
- /* triangulation would have been eaten right through. */
- if (nextapex != (vertex) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) > 0.0;
- while (badedge) {
- /* Eliminate the edge with an edge flip. As a result, the */
- /* right triangulation will have one more boundary triangle. */
- lprevself(nextedge);
- sym(nextedge, topcasing);
- lprevself(nextedge);
- sym(nextedge, sidecasing);
- bond(nextedge, topcasing);
- bond(rightcand, sidecasing);
- lprevself(rightcand);
- sym(rightcand, outercasing);
- lnextself(nextedge);
- bond(nextedge, outercasing);
- /* Correct the vertices to reflect the edge flip. */
- setorg(rightcand, NULL);
- setdest(rightcand, lowerright);
- setapex(rightcand, nextapex);
- setorg(nextedge, upperright);
- setdest(nextedge, NULL);
- setapex(nextedge, nextapex);
- /* Consider the newly exposed vertex. */
- upperright = nextapex;
- /* What vertex would be exposed if another edge were deleted? */
- otricopy(sidecasing, nextedge);
- apex(nextedge, nextapex);
- if (nextapex != (vertex) NULL) {
- /* Check whether the edge is Delaunay. */
- badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) > 0.0;
- }
- else {
- /* Avoid eating right through the triangulation. */
- badedge = 0;
- }
- }
- }
- }
- if (leftfinished
- || (!rightfinished
- && (incircle(m, b, upperleft, lowerleft, lowerright, upperright) > 0.0))) {
- /* Knit the triangulations, adding an edge from `lowerleft' */
- /* to `upperright'. */
- bond(baseedge, rightcand);
- lprev(rightcand, baseedge);
- setdest(baseedge, lowerleft);
- lowerright = upperright;
- sym(baseedge, rightcand);
- apex(rightcand, upperright);
- }
- else {
- /* Knit the triangulations, adding an edge from `upperleft' */
- /* to `lowerright'. */
- bond(baseedge, leftcand);
- lnext(leftcand, baseedge);
- setorg(baseedge, lowerright);
- lowerleft = upperleft;
- sym(baseedge, leftcand);
- apex(leftcand, upperleft);
- }
- if (b->verbose > 2) {
- printf(" Connecting ");
- printtriangle(m, b, &baseedge);
- }
- }
-}
-
-/*****************************************************************************/
-/* */
-/* divconqrecurse() Recursively form a Delaunay triangulation by the */
-/* divide-and-conquer method. */
-/* */
-/* Recursively breaks down the problem into smaller pieces, which are */
-/* knitted together by mergehulls(). The base cases (problems of two or */
-/* three vertices) are handled specially here. */
-/* */
-/* On completion, `farleft' and `farright' are bounding triangles such that */
-/* the origin of `farleft' is the leftmost vertex (breaking ties by */
-/* choosing the highest leftmost vertex), and the destination of */
-/* `farright' is the rightmost vertex (breaking ties by choosing the */
-/* lowest rightmost vertex). */
-/* */
-/*****************************************************************************/
-
-void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray, int vertices, int axis,
- struct otri *farleft, struct otri *farright) {
- struct otri midtri, tri1, tri2, tri3;
- struct otri innerleft, innerright;
- REAL area;
- int divider;
-
- if (b->verbose > 2) {
- printf(" Triangulating %d vertices.\n", vertices);
- }
- if (vertices == 2) {
- /* The triangulation of two vertices is an edge. An edge is */
- /* represented by two bounding triangles. */
- maketriangle(m, b, farleft);
- setorg(*farleft, sortarray[0]);
- setdest(*farleft, sortarray[1]);
- /* The apex is intentionally left NULL. */
- maketriangle(m, b, farright);
- setorg(*farright, sortarray[1]);
- setdest(*farright, sortarray[0]);
- /* The apex is intentionally left NULL. */
- bond(*farleft, *farright);
- lprevself(*farleft);
- lnextself(*farright);
- bond(*farleft, *farright);
- lprevself(*farleft);
- lnextself(*farright);
- bond(*farleft, *farright);
- if (b->verbose > 2) {
- printf(" Creating ");
- printtriangle(m, b, farleft);
- printf(" Creating ");
- printtriangle(m, b, farright);
- }
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- lprev(*farright, *farleft);
- return;
- }
- else if (vertices == 3) {
- /* The triangulation of three vertices is either a triangle (with */
- /* three bounding triangles) or two edges (with four bounding */
- /* triangles). In either case, four triangles are created. */
- maketriangle(m, b, &midtri);
- maketriangle(m, b, &tri1);
- maketriangle(m, b, &tri2);
- maketriangle(m, b, &tri3);
- area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
- if (area == 0.0) {
- /* Three collinear vertices; the triangulation is two edges. */
- setorg(midtri, sortarray[0]);
- setdest(midtri, sortarray[1]);
- setorg(tri1, sortarray[1]);
- setdest(tri1, sortarray[0]);
- setorg(tri2, sortarray[2]);
- setdest(tri2, sortarray[1]);
- setorg(tri3, sortarray[1]);
- setdest(tri3, sortarray[2]);
- /* All apices are intentionally left NULL. */
- bond(midtri, tri1);
- bond(tri2, tri3);
- lnextself(midtri);
- lprevself(tri1);
- lnextself(tri2);
- lprevself(tri3);
- bond(midtri, tri3);
- bond(tri1, tri2);
- lnextself(midtri);
- lprevself(tri1);
- lnextself(tri2);
- lprevself(tri3);
- bond(midtri, tri1);
- bond(tri2, tri3);
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- otricopy(tri1, *farleft);
- /* Ensure that the destination of `farright' is sortarray[2]. */
- otricopy(tri2, *farright);
- }
- else {
- /* The three vertices are not collinear; the triangulation is one */
- /* triangle, namely `midtri'. */
- setorg(midtri, sortarray[0]);
- setdest(tri1, sortarray[0]);
- setorg(tri3, sortarray[0]);
- /* Apices of tri1, tri2, and tri3 are left NULL. */
- if (area > 0.0) {
- /* The vertices are in counterclockwise order. */
- setdest(midtri, sortarray[1]);
- setorg(tri1, sortarray[1]);
- setdest(tri2, sortarray[1]);
- setapex(midtri, sortarray[2]);
- setorg(tri2, sortarray[2]);
- setdest(tri3, sortarray[2]);
- }
- else {
- /* The vertices are in clockwise order. */
- setdest(midtri, sortarray[2]);
- setorg(tri1, sortarray[2]);
- setdest(tri2, sortarray[2]);
- setapex(midtri, sortarray[1]);
- setorg(tri2, sortarray[1]);
- setdest(tri3, sortarray[1]);
- }
- /* The topology does not depend on how the vertices are ordered. */
- bond(midtri, tri1);
- lnextself(midtri);
- bond(midtri, tri2);
- lnextself(midtri);
- bond(midtri, tri3);
- lprevself(tri1);
- lnextself(tri2);
- bond(tri1, tri2);
- lprevself(tri1);
- lprevself(tri3);
- bond(tri1, tri3);
- lnextself(tri2);
- lprevself(tri3);
- bond(tri2, tri3);
- /* Ensure that the origin of `farleft' is sortarray[0]. */
- otricopy(tri1, *farleft);
- /* Ensure that the destination of `farright' is sortarray[2]. */
- if (area > 0.0) {
- otricopy(tri2, *farright);
- }
- else {
- lnext(*farleft, *farright);
- }
- }
- if (b->verbose > 2) {
- printf(" Creating ");
- printtriangle(m, b, &midtri);
- printf(" Creating ");
- printtriangle(m, b, &tri1);
- printf(" Creating ");
- printtriangle(m, b, &tri2);
- printf(" Creating ");
- printtriangle(m, b, &tri3);
- }
- return;
- }
- else {
- /* Split the vertices in half. */
- divider = vertices >> 1;
- /* Recursively triangulate each half. */
- divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
- divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis, &innerright,
- farright);
- if (b->verbose > 1) {
- printf(" Joining triangulations with %d and %d vertices.\n", divider, vertices - divider);
- }
- /* Merge the two triangulations into one. */
- mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
- }
-}
-
-long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost) {
- struct otri searchedge;
- struct otri dissolveedge;
- struct otri deadtriangle;
- vertex markorg;
- long hullsize;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (b->verbose) {
- printf(" Removing ghost triangles.\n");
- }
- /* Find an edge on the convex hull to start point location from. */
- lprev(*startghost, searchedge);
- symself(searchedge);
- m->dummytri[0] = encode(searchedge);
- /* Remove the bounding box and count the convex hull edges. */
- otricopy(*startghost, dissolveedge);
- hullsize = 0;
- do {
- hullsize++;
- lnext(dissolveedge, deadtriangle);
- lprevself(dissolveedge);
- symself(dissolveedge);
- /* If no PSLG is involved, set the boundary markers of all the vertices */
- /* on the convex hull. If a PSLG is used, this step is done later. */
- if (!b->poly) {
- /* Watch out for the case where all the input vertices are collinear. */
- if (dissolveedge.tri != m->dummytri) {
- org(dissolveedge, markorg);
- if (vertexmark(markorg) == 0) {
- setvertexmark(markorg, 1);
- }
- }
- }
- /* Remove a bounding triangle from a convex hull triangle. */
- dissolve(dissolveedge);
- /* Find the next bounding triangle. */
- sym(deadtriangle, dissolveedge);
- /* Delete the bounding triangle. */
- triangledealloc(m, deadtriangle.tri);
- } while (!otriequal(dissolveedge, *startghost));
- return hullsize;
-}
-
-/*****************************************************************************/
-/* */
-/* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */
-/* conquer method. */
-/* */
-/* Sorts the vertices, calls a recursive procedure to triangulate them, and */
-/* removes the bounding box, setting boundary markers as appropriate. */
-/* */
-/*****************************************************************************/
-
-long divconqdelaunay(struct mesh *m, struct behavior *b) {
- vertex *sortarray;
- struct otri hullleft, hullright;
- int divider;
- int i, j;
-
- if (b->verbose) {
- printf(" Sorting vertices.\n");
- }
-
- /* Allocate an array of pointers to vertices for sorting. */
- sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
- traversalinit(&m->vertices);
- for (i = 0; i < m->invertices; i++) {
- sortarray[i] = vertextraverse(m);
- }
- /* Sort the vertices. */
- vertexsort(sortarray, m->invertices);
- /* Discard duplicate vertices, which can really mess up the algorithm. */
- i = 0;
- for (j = 1; j < m->invertices; j++) {
- if ((sortarray[i][0] == sortarray[j][0]) && (sortarray[i][1] == sortarray[j][1])) {
- //if (!b->quiet) {
- printf("Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
- sortarray[j][0], sortarray[j][1]);
- //}
- setvertextype(sortarray[j], UNDEADVERTEX);
- m->undeads++;
- }
- else {
- i++;
- sortarray[i] = sortarray[j];
- }
- }
- i++;
- if (b->dwyer) {
- /* Re-sort the array of vertices to accommodate alternating cuts. */
- divider = i >> 1;
- if (i - divider >= 2) {
- if (divider >= 2) {
- alternateaxes(sortarray, divider, 1);
- }
- alternateaxes(&sortarray[divider], i - divider, 1);
- }
- }
-
- if (b->verbose) {
- printf(" Forming triangulation.\n");
- }
-
- /* Form the Delaunay triangulation. */
- divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
- trifree((VOID *) sortarray);
-
- return removeghosts(m, b, &hullleft);
-}
-
-/** **/
-/** **/
-/********* Divide-and-conquer Delaunay triangulation ends here *********/
-
-/********* General mesh construction routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* delaunay() Form a Delaunay triangulation. */
-/* */
-/*****************************************************************************/
-
-long delaunay(struct mesh *m, struct behavior *b) {
- long hulledges;
-
- m->eextras = 0;
- initializetrisubpools(m, b);
-
-#ifdef REDUCED
- if (!b->quiet) {
- printf( "Constructing Delaunay triangulation by divide-and-conquer method.\n");
- }
- hulledges = divconqdelaunay(m, b);
-#else /* not REDUCED */
- if (!b->quiet)
- {
- printf("Constructing Delaunay triangulation ");
- if (b->incremental)
- {
- printf("by incremental method.\n");
- }
- else if (b->sweepline)
- {
- printf("by sweepline method.\n");
- }
- else
- {
- printf("by divide-and-conquer method.\n");
- }
- }
- if (b->incremental)
- {
- hulledges = incrementaldelaunay(m, b);
- }
- else if (b->sweepline)
- {
- hulledges = sweeplinedelaunay(m, b);
- }
- else
- {
- hulledges = divconqdelaunay(m, b);
- }
-#endif /* not REDUCED */
-
- if (m->triangles.items == 0) {
- /* The input vertices were all collinear, so there are no triangles. */
- return 0l;
- }
- else {
- return hulledges;
- }
-}
-
-/** **/
-/** **/
-/********* General mesh construction routines end here *********/
-
-/********* Segment insertion begins here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* finddirection() Find the first triangle on the path from one point */
-/* to another. */
-/* */
-/* Finds the triangle that intersects a line segment drawn from the */
-/* origin of `searchtri' to the point `searchpoint', and returns the result */
-/* in `searchtri'. The origin of `searchtri' does not change, even though */
-/* the triangle returned may differ from the one passed in. This routine */
-/* is used to find the direction to move in to get from one point to */
-/* another. */
-/* */
-/* The return value notes whether the destination or apex of the found */
-/* triangle is collinear with the two points in question. */
-/* */
-/*****************************************************************************/
-
-enum finddirectionresult finddirection(struct mesh *m, struct behavior *b, struct otri *searchtri,
- vertex searchpoint) {
- struct otri checktri;
- vertex startvertex;
- vertex leftvertex, rightvertex;
- REAL leftccw, rightccw;
- int leftflag, rightflag;
- triangle ptr; /* Temporary variable used by onext() and oprev(). */
-
- org(*searchtri, startvertex);
- dest(*searchtri, rightvertex);
- apex(*searchtri, leftvertex);
- /* Is `searchpoint' to the left? */
- leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
- leftflag = leftccw > 0.0;
- /* Is `searchpoint' to the right? */
- rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
- rightflag = rightccw > 0.0;
- if (leftflag && rightflag) {
- /* `searchtri' faces directly away from `searchpoint'. We could go left */
- /* or right. Ask whether it's a triangle or a boundary on the left. */
- onext(*searchtri, checktri);
- if (checktri.tri == m->dummytri) {
- leftflag = 0;
- }
- else {
- rightflag = 0;
- }
- }
- while (leftflag) {
- /* Turn left until satisfied. */
- onextself(*searchtri);
- if (searchtri->tri == m->dummytri) {
- printf("Internal error in finddirection(): Unable to find a\n");
- printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], startvertex[1]);
- printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
- internalerror();
- return 0;
- }
- apex(*searchtri, leftvertex);
- rightccw = leftccw;
- leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
- leftflag = leftccw > 0.0;
- }
- while (rightflag) {
- /* Turn right until satisfied. */
- oprevself(*searchtri);
- if (searchtri->tri == m->dummytri) {
- printf("Internal error in finddirection(): Unable to find a\n");
- printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], startvertex[1]);
- printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
- internalerror();
- return 0;
- }
- dest(*searchtri, rightvertex);
- leftccw = rightccw;
- rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
- rightflag = rightccw > 0.0;
- }
- if (leftccw == 0.0) {
- return LEFTCOLLINEAR;
- }
- else if (rightccw == 0.0) {
- return RIGHTCOLLINEAR;
- }
- else {
- return WITHIN;
- }
-}
-
-/*****************************************************************************/
-/* */
-/* segmentintersection() Find the intersection of an existing segment */
-/* and a segment that is being inserted. Insert */
-/* a vertex at the intersection, splitting an */
-/* existing subsegment. */
-/* */
-/* The segment being inserted connects the apex of splittri to endpoint2. */
-/* splitsubseg is the subsegment being split, and MUST adjoin splittri. */
-/* Hence, endpoints of the subsegment being split are the origin and */
-/* destination of splittri. */
-/* */
-/* On completion, splittri is a handle having the newly inserted */
-/* intersection point as its origin, and endpoint1 as its destination. */
-/* */
-/*****************************************************************************/
-
-void segmentintersection(struct mesh *m, struct behavior *b, struct otri *splittri,
- struct osub *splitsubseg, vertex endpoint2) {
- struct osub opposubseg;
- vertex endpoint1;
- vertex torg, tdest;
- vertex leftvertex, rightvertex;
- vertex newvertex;
- enum insertvertexresult success;
- //enum finddirectionresult collinear;
- REAL ex, ey;
- REAL tx, ty;
- REAL etx, ety;
- REAL split, denom;
- int i;
- triangle ptr; /* Temporary variable used by onext(). */
- subseg sptr; /* Temporary variable used by snext(). */
-
- /* Find the other three segment endpoints. */
- apex(*splittri, endpoint1);
- org(*splittri, torg);
- dest(*splittri, tdest);
- /* Segment intersection formulae; see the Antonio reference. */
- tx = tdest[0] - torg[0];
- ty = tdest[1] - torg[1];
- ex = endpoint2[0] - endpoint1[0];
- ey = endpoint2[1] - endpoint1[1];
- etx = torg[0] - endpoint2[0];
- ety = torg[1] - endpoint2[1];
- denom = ty * ex - tx * ey;
- if (denom == 0.0) {
- printf("Internal error in segmentintersection():");
- printf(" Attempt to find intersection of parallel segments.\n");
- internalerror();
- return;
- }
- split = (ey * etx - ex * ety) / denom;
- /* Create the new vertex. */
- newvertex = (vertex) poolalloc(&m->vertices);
- /* Interpolate its coordinate and attributes. */
- for (i = 0; i < 2 + m->nextras; i++) {
- newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
- }
- setvertexmark(newvertex, mark(*splitsubseg));
- setvertextype(newvertex, INPUTVERTEX);
- if (b->verbose > 1) {
- printf(
- " Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n", torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
- }
- /* Insert the intersection vertex. This should always succeed. */
- success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
- if (success != SUCCESSFULVERTEX) {
- printf("Internal error in segmentintersection():\n");
- printf(" Failure to split a segment.\n");
- internalerror();
- return;
- }
- /* Record a triangle whose origin is the new vertex. */
- setvertex2tri(newvertex, encode(*splittri));
- if (m->steinerleft > 0) {
- m->steinerleft--;
- }
-
- /* Divide the segment into two, and correct the segment endpoints. */
- ssymself(*splitsubseg);
- spivot(*splitsubseg, opposubseg);
- sdissolve(*splitsubseg);
- sdissolve(opposubseg);
- do {
- setsegorg(*splitsubseg, newvertex);
- snextself(*splitsubseg);
- } while (splitsubseg->ss != m->dummysub);
- do {
- setsegorg(opposubseg, newvertex);
- snextself(opposubseg);
- } while (opposubseg.ss != m->dummysub);
-
- /* Inserting the vertex may have caused edge flips. We wish to rediscover */
- /* the edge connecting endpoint1 to the new intersection vertex. */
-
- // FIXME collinear =
- finddirection(m, b, splittri, endpoint1);
- if (error_set)
- return;
-
- dest(*splittri, rightvertex);
- apex(*splittri, leftvertex);
- if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
- onextself(*splittri);
- }
- else if ((rightvertex[0] != endpoint1[0]) || (rightvertex[1] != endpoint1[1])) {
- printf("Internal error in segmentintersection():\n");
- printf(" Topological inconsistency after splitting a segment.\n");
- internalerror();
- return;
- }
- /* `splittri' should have destination endpoint1. */
-}
-
-/*****************************************************************************/
-/* */
-/* scoutsegment() Scout the first triangle on the path from one endpoint */
-/* to another, and check for completion (reaching the */
-/* second endpoint), a collinear vertex, or the */
-/* intersection of two segments. */
-/* */
-/* Returns one if the entire segment is successfully inserted, and zero if */
-/* the job must be finished by conformingedge() or constrainededge(). */
-/* */
-/* If the first triangle on the path has the second endpoint as its */
-/* destination or apex, a subsegment is inserted and the job is done. */
-/* */
-/* If the first triangle on the path has a destination or apex that lies on */
-/* the segment, a subsegment is inserted connecting the first endpoint to */
-/* the collinear vertex, and the search is continued from the collinear */
-/* vertex. */
-/* */
-/* If the first triangle on the path has a subsegment opposite its origin, */
-/* then there is a segment that intersects the segment being inserted. */
-/* Their intersection vertex is inserted, splitting the subsegment. */
-/* */
-/*****************************************************************************/
-
-int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri, vertex endpoint2,
- int newmark) {
- struct otri crosstri;
- struct osub crosssubseg;
- vertex leftvertex, rightvertex;
- enum finddirectionresult collinear;
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- collinear = finddirection(m, b, searchtri, endpoint2);
- dest(*searchtri, rightvertex);
- apex(*searchtri, leftvertex);
- if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1]))
- || ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
- /* The segment is already an edge in the mesh. */
- if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
- lprevself(*searchtri);
- }
- /* Insert a subsegment, if there isn't already one there. */
- insertsubseg(m, b, searchtri, newmark);
- return 1;
- }
- else if (collinear == LEFTCOLLINEAR) {
- /* We've collided with a vertex between the segment's endpoints. */
- /* Make the collinear vertex be the triangle's origin. */
- lprevself(*searchtri);
- insertsubseg(m, b, searchtri, newmark);
- /* Insert the remainder of the segment. */
- return scoutsegment(m, b, searchtri, endpoint2, newmark);
- }
- else if (collinear == RIGHTCOLLINEAR) {
- /* We've collided with a vertex between the segment's endpoints. */
- insertsubseg(m, b, searchtri, newmark);
- /* Make the collinear vertex be the triangle's origin. */
- lnextself(*searchtri);
- /* Insert the remainder of the segment. */
- return scoutsegment(m, b, searchtri, endpoint2, newmark);
- }
- else {
- lnext(*searchtri, crosstri);
- tspivot(crosstri, crosssubseg);
- /* Check for a crossing segment. */
- if (crosssubseg.ss == m->dummysub) {
- return 0;
- }
- else {
- /* Insert a vertex at the intersection. */
- segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
- if (error_set)
- return -1;
- otricopy(crosstri, *searchtri);
- insertsubseg(m, b, searchtri, newmark);
- /* Insert the remainder of the segment. */
- return scoutsegment(m, b, searchtri, endpoint2, newmark);
- }
- }
-}
-
-/*****************************************************************************/
-/* */
-/* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */
-/* recursively from an existing vertex. Pay special */
-/* attention to stacking inverted triangles. */
-/* */
-/* This is a support routine for inserting segments into a constrained */
-/* Delaunay triangulation. */
-/* */
-/* The origin of fixuptri is treated as if it has just been inserted, and */
-/* the local Delaunay condition needs to be enforced. It is only enforced */
-/* in one sector, however, that being the angular range defined by */
-/* fixuptri. */
-/* */
-/* This routine also needs to make decisions regarding the "stacking" of */
-/* triangles. (Read the description of constrainededge() below before */
-/* reading on here, so you understand the algorithm.) If the position of */
-/* the new vertex (the origin of fixuptri) indicates that the vertex before */
-/* it on the polygon is a reflex vertex, then "stack" the triangle by */
-/* doing nothing. (fixuptri is an inverted triangle, which is how stacked */
-/* triangles are identified.) */
-/* */
-/* Otherwise, check whether the vertex before that was a reflex vertex. */
-/* If so, perform an edge flip, thereby eliminating an inverted triangle */
-/* (popping it off the stack). The edge flip may result in the creation */
-/* of a new inverted triangle, depending on whether or not the new vertex */
-/* is visible to the vertex three edges behind on the polygon. */
-/* */
-/* If neither of the two vertices behind the new vertex are reflex */
-/* vertices, fixuptri and fartri, the triangle opposite it, are not */
-/* inverted; hence, ensure that the edge between them is locally Delaunay. */
-/* */
-/* `leftside' indicates whether or not fixuptri is to the left of the */
-/* segment being inserted. (Imagine that the segment is pointing up from */
-/* endpoint1 to endpoint2.) */
-/* */
-/*****************************************************************************/
-
-void delaunayfixup(struct mesh *m, struct behavior *b, struct otri *fixuptri, int leftside) {
- struct otri neartri;
- struct otri fartri;
- struct osub faredge;
- vertex nearvertex, leftvertex, rightvertex, farvertex;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- lnext(*fixuptri, neartri);
- sym(neartri, fartri);
- /* Check if the edge opposite the origin of fixuptri can be flipped. */
- if (fartri.tri == m->dummytri) {
- return;
- }
- tspivot(neartri, faredge);
- if (faredge.ss != m->dummysub) {
- return;
- }
- /* Find all the relevant vertices. */
- apex(neartri, nearvertex);
- org(neartri, leftvertex);
- dest(neartri, rightvertex);
- apex(fartri, farvertex);
- /* Check whether the previous polygon vertex is a reflex vertex. */
- if (leftside) {
- if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
- /* leftvertex is a reflex vertex too. Nothing can */
- /* be done until a convex section is found. */
- return;
- }
- }
- else {
- if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
- /* rightvertex is a reflex vertex too. Nothing can */
- /* be done until a convex section is found. */
- return;
- }
- }
- if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
- /* fartri is not an inverted triangle, and farvertex is not a reflex */
- /* vertex. As there are no reflex vertices, fixuptri isn't an */
- /* inverted triangle, either. Hence, test the edge between the */
- /* triangles to ensure it is locally Delaunay. */
- if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <= 0.0) {
- return;
- }
- /* Not locally Delaunay; go on to an edge flip. */
- } /* else fartri is inverted; remove it from the stack by flipping. */
- flip(m, b, &neartri);
- lprevself(*fixuptri);
- /* Restore the origin of fixuptri after the flip. */
- /* Recursively process the two triangles that result from the flip. */
- delaunayfixup(m, b, fixuptri, leftside);
- delaunayfixup(m, b, &fartri, leftside);
-}
-
-/*****************************************************************************/
-/* */
-/* constrainededge() Force a segment into a constrained Delaunay */
-/* triangulation by deleting the triangles it */
-/* intersects, and triangulating the polygons that */
-/* form on each side of it. */
-/* */
-/* Generates a single subsegment connecting `endpoint1' to `endpoint2'. */
-/* The triangle `starttri' has `endpoint1' as its origin. `newmark' is the */
-/* boundary marker of the segment. */
-/* */
-/* To insert a segment, every triangle whose interior intersects the */
-/* segment is deleted. The union of these deleted triangles is a polygon */
-/* (which is not necessarily monotone, but is close enough), which is */
-/* divided into two polygons by the new segment. This routine's task is */
-/* to generate the Delaunay triangulation of these two polygons. */
-/* */
-/* You might think of this routine's behavior as a two-step process. The */
-/* first step is to walk from endpoint1 to endpoint2, flipping each edge */
-/* encountered. This step creates a fan of edges connected to endpoint1, */
-/* including the desired edge to endpoint2. The second step enforces the */
-/* Delaunay condition on each side of the segment in an incremental manner: */
-/* proceeding along the polygon from endpoint1 to endpoint2 (this is done */
-/* independently on each side of the segment), each vertex is "enforced" */
-/* as if it had just been inserted, but affecting only the previous */
-/* vertices. The result is the same as if the vertices had been inserted */
-/* in the order they appear on the polygon, so the result is Delaunay. */
-/* */
-/* In truth, constrainededge() interleaves these two steps. The procedure */
-/* walks from endpoint1 to endpoint2, and each time an edge is encountered */
-/* and flipped, the newly exposed vertex (at the far end of the flipped */
-/* edge) is "enforced" upon the previously flipped edges, usually affecting */
-/* only one side of the polygon (depending upon which side of the segment */
-/* the vertex falls on). */
-/* */
-/* The algorithm is complicated by the need to handle polygons that are not */
-/* convex. Although the polygon is not necessarily monotone, it can be */
-/* triangulated in a manner similar to the stack-based algorithms for */
-/* monotone polygons. For each reflex vertex (local concavity) of the */
-/* polygon, there will be an inverted triangle formed by one of the edge */
-/* flips. (An inverted triangle is one with negative area - that is, its */
-/* vertices are arranged in clockwise order - and is best thought of as a */
-/* wrinkle in the fabric of the mesh.) Each inverted triangle can be */
-/* thought of as a reflex vertex pushed on the stack, waiting to be fixed */
-/* later. */
-/* */
-/* A reflex vertex is popped from the stack when a vertex is inserted that */
-/* is visible to the reflex vertex. (However, if the vertex behind the */
-/* reflex vertex is not visible to the reflex vertex, a new inverted */
-/* triangle will take its place on the stack.) These details are handled */
-/* by the delaunayfixup() routine above. */
-/* */
-/*****************************************************************************/
-
-void constrainededge(struct mesh *m, struct behavior *b, struct otri *starttri, vertex endpoint2,
- int newmark) {
- struct otri fixuptri, fixuptri2;
- struct osub crosssubseg;
- vertex endpoint1;
- vertex farvertex;
- REAL area;
- int collision;
- int done;
- triangle ptr; /* Temporary variable used by sym() and oprev(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- org(*starttri, endpoint1);
- lnext(*starttri, fixuptri);
- flip(m, b, &fixuptri);
- /* `collision' indicates whether we have found a vertex directly */
- /* between endpoint1 and endpoint2. */
- collision = 0;
- done = 0;
- do {
- org(fixuptri, farvertex);
- /* `farvertex' is the extreme point of the polygon we are "digging" */
- /* to get from endpoint1 to endpoint2. */
- if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around endpoint2. */
- delaunayfixup(m, b, &fixuptri, 0);
- delaunayfixup(m, b, &fixuptri2, 1);
- done = 1;
- }
- else {
- /* Check whether farvertex is to the left or right of the segment */
- /* being inserted, to decide which edge of fixuptri to dig */
- /* through next. */
- area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
- if (area == 0.0) {
- /* We've collided with a vertex between endpoint1 and endpoint2. */
- collision = 1;
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around farvertex. */
- delaunayfixup(m, b, &fixuptri, 0);
- delaunayfixup(m, b, &fixuptri2, 1);
- done = 1;
- }
- else {
- if (area > 0.0) { /* farvertex is to the left of the segment. */
- oprev(fixuptri, fixuptri2);
- /* Enforce the Delaunay condition around farvertex, on the */
- /* left side of the segment only. */
- delaunayfixup(m, b, &fixuptri2, 1);
- /* Flip the edge that crosses the segment. After the edge is */
- /* flipped, one of its endpoints is the fan vertex, and the */
- /* destination of fixuptri is the fan vertex. */
- lprevself(fixuptri);
- }
- else { /* farvertex is to the right of the segment. */
- delaunayfixup(m, b, &fixuptri, 0);
- /* Flip the edge that crosses the segment. After the edge is */
- /* flipped, one of its endpoints is the fan vertex, and the */
- /* destination of fixuptri is the fan vertex. */
- oprevself(fixuptri);
- }
- /* Check for two intersecting segments. */
- tspivot(fixuptri, crosssubseg);
- if (crosssubseg.ss == m->dummysub) {
- flip(m, b, &fixuptri); /* May create inverted triangle at left. */
- }
- else {
- /* We've collided with a segment between endpoint1 and endpoint2. */
- collision = 1;
- /* Insert a vertex at the intersection. */
- segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
- if (error_set)
- return;
-
- done = 1;
- }
- }
- }
- } while (!done);
- /* Insert a subsegment to make the segment permanent. */
- insertsubseg(m, b, &fixuptri, newmark);
- /* If there was a collision with an interceding vertex, install another */
- /* segment connecting that vertex with endpoint2. */
- if (collision) {
- /* Insert the remainder of the segment. */
- if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
- constrainededge(m, b, &fixuptri, endpoint2, newmark);
- }
- }
-}
-
-/*****************************************************************************/
-/* */
-/* insertsegment() Insert a PSLG segment into a triangulation. */
-/* */
-/*****************************************************************************/
-
-void insertsegment(struct mesh *m, struct behavior *b, vertex endpoint1, vertex endpoint2,
- int newmark) {
- struct otri searchtri1, searchtri2;
- triangle encodedtri;
- vertex checkvertex;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (b->verbose > 1) {
- printf( " Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
- endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
- }
-
- /* Find a triangle whose origin is the segment's first endpoint. */
- checkvertex = (vertex) NULL;
- encodedtri = vertex2tri(endpoint1);
- if (encodedtri != (triangle) NULL) {
- decode(encodedtri, searchtri1);
- org(searchtri1, checkvertex);
- }
- if (checkvertex != endpoint1) {
- /* Find a boundary triangle to search from. */
- searchtri1.tri = m->dummytri;
- searchtri1.orient = 0;
- symself(searchtri1);
- /* Search for the segment's first endpoint by point location. */
- if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
- printf( "Internal error in insertsegment(): Unable to locate PSLG vertex\n");
- printf(" (%.12g, %.12g) in triangulation.\n", endpoint1[0], endpoint1[1]);
- internalerror();
- return;
- }
- }
- /* Remember this triangle to improve subsequent point location. */
- otricopy(searchtri1, m->recenttri);
- /* Scout the beginnings of a path from the first endpoint */
- /* toward the second. */
- if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
- /* The segment was easily inserted. */
- return;
- }
- /* The first endpoint may have changed if a collision with an intervening */
- /* vertex on the segment occurred. */
- org(searchtri1, endpoint1);
-
- /* Find a triangle whose origin is the segment's second endpoint. */
- checkvertex = (vertex) NULL;
- encodedtri = vertex2tri(endpoint2);
- if (encodedtri != (triangle) NULL) {
- decode(encodedtri, searchtri2);
- org(searchtri2, checkvertex);
- }
- if (checkvertex != endpoint2) {
- /* Find a boundary triangle to search from. */
- searchtri2.tri = m->dummytri;
- searchtri2.orient = 0;
- symself(searchtri2);
- /* Search for the segment's second endpoint by point location. */
- if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
- printf( "Internal error in insertsegment(): Unable to locate PSLG vertex\n");
- printf(" (%.12g, %.12g) in triangulation.\n", endpoint2[0], endpoint2[1]);
- internalerror();
- return;
- }
- }
- /* Remember this triangle to improve subsequent point location. */
- otricopy(searchtri2, m->recenttri);
- /* Scout the beginnings of a path from the second endpoint */
- /* toward the first. */
- if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
- /* The segment was easily inserted. */
- return;
- }
- /* The second endpoint may have changed if a collision with an intervening */
- /* vertex on the segment occurred. */
- org(searchtri2, endpoint2);
-
- /* Insert the segment directly into the triangulation. */
- constrainededge(m, b, &searchtri1, endpoint2, newmark);
-}
-
-/*****************************************************************************/
-/* */
-/* markhull() Cover the convex hull of a triangulation with subsegments. */
-/* */
-/*****************************************************************************/
-
-void markhull(struct mesh *m, struct behavior *b) {
- struct otri hulltri;
- struct otri nexttri;
- struct otri starttri;
- triangle ptr; /* Temporary variable used by sym() and oprev(). */
-
- /* Find a triangle handle on the hull. */
- hulltri.tri = m->dummytri;
- hulltri.orient = 0;
- symself(hulltri);
- /* Remember where we started so we know when to stop. */
- otricopy(hulltri, starttri);
- /* Go once counterclockwise around the convex hull. */
- do {
- /* Create a subsegment if there isn't already one here. */
- insertsubseg(m, b, &hulltri, 1);
- /* To find the next hull edge, go clockwise around the next vertex. */
- lnextself(hulltri);
- oprev(hulltri, nexttri);
- while (nexttri.tri != m->dummytri) {
- otricopy(nexttri, hulltri);
- oprev(hulltri, nexttri);
- }
- } while (!otriequal(hulltri, starttri));
-}
-
-/*****************************************************************************/
-/* */
-/* formskeleton() Create the segments of a triangulation, including PSLG */
-/* segments and edges on the convex hull. */
-/* */
-/* The PSLG segments are read from a .poly file. The return value is the */
-/* number of segments in the file. */
-/* */
-/*****************************************************************************/
-
-void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist, int *segmentmarkerlist,
- int numberofsegments) {
- char polyfilename[6];
- int index;
- vertex endpoint1, endpoint2;
- int segmentmarkers;
- int end1, end2;
- int boundmarker;
- int i;
-
- if (b->poly) {
- if (!b->quiet) {
- printf("Recovering segments in Delaunay triangulation.\n");
- }
- strcpy(polyfilename, "input");
- m->insegments = numberofsegments;
- segmentmarkers = segmentmarkerlist != (int *) NULL;
- index = 0;
- /* If the input vertices are collinear, there is no triangulation, */
- /* so don't try to insert segments. */
- if (m->triangles.items == 0) {
- return;
- }
-
- /* If segments are to be inserted, compute a mapping */
- /* from vertices to triangles. */
- if (m->insegments > 0) {
- makevertexmap(m, b);
- if (b->verbose) {
- printf(" Recovering PSLG segments.\n");
- }
- }
-
- boundmarker = 0;
- /* Read and insert the segments. */
- for (i = 0; i < m->insegments; i++) {
- end1 = segmentlist[index++];
- end2 = segmentlist[index++];
- if (segmentmarkers) {
- boundmarker = segmentmarkerlist[i];
- }
- if ((end1 < b->firstnumber) || (end1 >= b->firstnumber + m->invertices)) {
- if (!b->quiet) {
- printf( "Warning: Invalid first endpoint of segment %d in %s.\n",
- b->firstnumber + i, polyfilename);
- }
- }
- else if ((end2 < b->firstnumber) || (end2 >= b->firstnumber + m->invertices)) {
- if (!b->quiet) {
- printf( "Warning: Invalid second endpoint of segment %d in %s.\n",
- b->firstnumber + i, polyfilename);
- }
- }
- else {
- /* Find the vertices numbered `end1' and `end2'. */
- endpoint1 = getvertex(m, b, end1);
- endpoint2 = getvertex(m, b, end2);
- if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
- if (!b->quiet) {
- printf( "Warning: Endpoints of segment %d are coincident in %s.\n",
- b->firstnumber + i, polyfilename);
- }
- }
- else {
- insertsegment(m, b, endpoint1, endpoint2, boundmarker);
- if (error_set)
- return;
- }
- }
- }
- }
- else {
- m->insegments = 0;
- }
- if (b->convex || !b->poly) {
- /* Enclose the convex hull with subsegments. */
- if (b->verbose) {
- printf(" Enclosing convex hull with segments.\n");
- }
- markhull(m, b);
- }
-}
-
-/** **/
-/** **/
-/********* Segment insertion ends here *********/
-
-/********* Carving out holes and concavities begins here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* infecthull() Virally infect all of the triangles of the convex hull */
-/* that are not protected by subsegments. Where there are */
-/* subsegments, set boundary markers as appropriate. */
-/* */
-/*****************************************************************************/
-
-void infecthull(struct mesh *m, struct behavior *b) {
- struct otri hulltri;
- struct otri nexttri;
- struct otri starttri;
- struct osub hullsubseg;
- triangle **deadtriangle;
- vertex horg, hdest;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (b->verbose) {
- printf(" Marking concavities (external triangles) for elimination.\n");
- }
- /* Find a triangle handle on the hull. */
- hulltri.tri = m->dummytri;
- hulltri.orient = 0;
- symself(hulltri);
- /* Remember where we started so we know when to stop. */
- otricopy(hulltri, starttri);
- /* Go once counterclockwise around the convex hull. */
- do {
- /* Ignore triangles that are already infected. */
- if (!infected(hulltri)) {
- /* Is the triangle protected by a subsegment? */
- tspivot(hulltri, hullsubseg);
- if (hullsubseg.ss == m->dummysub) {
- /* The triangle is not protected; infect it. */
- if (!infected(hulltri)) {
- infect(hulltri);
- deadtriangle = (triangle **) poolalloc(&m->viri);
- *deadtriangle = hulltri.tri;
- }
- }
- else {
- /* The triangle is protected; set boundary markers if appropriate. */
- if (mark(hullsubseg) == 0) {
- setmark(hullsubseg, 1);
- org(hulltri, horg);
- dest(hulltri, hdest);
- if (vertexmark(horg) == 0) {
- setvertexmark(horg, 1);
- }
- if (vertexmark(hdest) == 0) {
- setvertexmark(hdest, 1);
- }
- }
- }
- }
- /* To find the next hull edge, go clockwise around the next vertex. */
- lnextself(hulltri);
- oprev(hulltri, nexttri);
- while (nexttri.tri != m->dummytri) {
- otricopy(nexttri, hulltri);
- oprev(hulltri, nexttri);
- }
- } while (!otriequal(hulltri, starttri));
-}
-
-/*****************************************************************************/
-/* */
-/* plague() Spread the virus from all infected triangles to any neighbors */
-/* not protected by subsegments. Delete all infected triangles. */
-/* */
-/* This is the procedure that actually creates holes and concavities. */
-/* */
-/* This procedure operates in two phases. The first phase identifies all */
-/* the triangles that will die, and marks them as infected. They are */
-/* marked to ensure that each triangle is added to the virus pool only */
-/* once, so the procedure will terminate. */
-/* */
-/* The second phase actually eliminates the infected triangles. It also */
-/* eliminates orphaned vertices. */
-/* */
-/*****************************************************************************/
-
-void plague(struct mesh *m, struct behavior *b) {
- struct otri testtri;
- struct otri neighbor;
- triangle **virusloop;
- triangle **deadtriangle;
- struct osub neighborsubseg;
- vertex testvertex;
- vertex norg, ndest;
- vertex deadorg, deaddest, deadapex;
- int killorg;
- triangle ptr; /* Temporary variable used by sym() and onext(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (b->verbose) {
- printf(" Marking neighbors of marked triangles.\n");
- }
- /* Loop through all the infected triangles, spreading the virus to */
- /* their neighbors, then to their neighbors' neighbors. */
- traversalinit(&m->viri);
- virusloop = (triangle **) traverse(&m->viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- /* A triangle is marked as infected by messing with one of its pointers */
- /* to subsegments, setting it to an illegal value. Hence, we have to */
- /* temporarily uninfect this triangle so that we can examine its */
- /* adjacent subsegments. */
- uninfect(testtri);
- if (b->verbose > 2) {
- /* Assign the triangle an orientation for convenience in */
- /* checking its vertices. */
- testtri.orient = 0;
- org(testtri, deadorg);
- dest(testtri, deaddest);
- apex(testtri, deadapex);
- printf(
- " Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", deadorg[0], deadorg[1], deaddest[0], deaddest[1], deadapex[0], deadapex[1]);
- }
- /* Check each of the triangle's three neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- /* Find the neighbor. */
- sym(testtri, neighbor);
- /* Check for a subsegment between the triangle and its neighbor. */
- tspivot(testtri, neighborsubseg);
- /* Check if the neighbor is nonexistent or already infected. */
- if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
- if (neighborsubseg.ss != m->dummysub) {
- /* There is a subsegment separating the triangle from its */
- /* neighbor, but both triangles are dying, so the subsegment */
- /* dies too. */
- subsegdealloc(m, neighborsubseg.ss);
- if (neighbor.tri != m->dummytri) {
- /* Make sure the subsegment doesn't get deallocated again */
- /* later when the infected neighbor is visited. */
- uninfect(neighbor);
- tsdissolve(neighbor);
- infect(neighbor);
- }
- }
- }
- else { /* The neighbor exists and is not infected. */
- if (neighborsubseg.ss == m->dummysub) {
- /* There is no subsegment protecting the neighbor, so */
- /* the neighbor becomes infected. */
- if (b->verbose > 2) {
- org(neighbor, deadorg);
- dest(neighbor, deaddest);
- apex(neighbor, deadapex);
- printf(
- " Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", deadorg[0], deadorg[1], deaddest[0], deaddest[1], deadapex[0], deadapex[1]);
- }
- infect(neighbor);
- /* Ensure that the neighbor's neighbors will be infected. */
- deadtriangle = (triangle **) poolalloc(&m->viri);
- *deadtriangle = neighbor.tri;
- }
- else { /* The neighbor is protected by a subsegment. */
- /* Remove this triangle from the subsegment. */
- stdissolve(neighborsubseg);
- /* The subsegment becomes a boundary. Set markers accordingly. */
- if (mark(neighborsubseg) == 0) {
- setmark(neighborsubseg, 1);
- }
- org(neighbor, norg);
- dest(neighbor, ndest);
- if (vertexmark(norg) == 0) {
- setvertexmark(norg, 1);
- }
- if (vertexmark(ndest) == 0) {
- setvertexmark(ndest, 1);
- }
- }
- }
- }
- /* Remark the triangle as infected, so it doesn't get added to the */
- /* virus pool again. */
- infect(testtri);
- virusloop = (triangle **) traverse(&m->viri);
- }
-
- if (b->verbose) {
- printf(" Deleting marked triangles.\n");
- }
-
- traversalinit(&m->viri);
- virusloop = (triangle **) traverse(&m->viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
-
- /* Check each of the three corners of the triangle for elimination. */
- /* This is done by walking around each vertex, checking if it is */
- /* still connected to at least one live triangle. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- org(testtri, testvertex);
- /* Check if the vertex has already been tested. */
- if (testvertex != (vertex) NULL) {
- killorg = 1;
- /* Mark the corner of the triangle as having been tested. */
- setorg(testtri, NULL);
- /* Walk counterclockwise about the vertex. */
- onext(testtri, neighbor);
- /* Stop upon reaching a boundary or the starting triangle. */
- while ((neighbor.tri != m->dummytri) && (!otriequal(neighbor, testtri))) {
- if (infected(neighbor)) {
- /* Mark the corner of this triangle as having been tested. */
- setorg(neighbor, NULL);
- }
- else {
- /* A live triangle. The vertex survives. */
- killorg = 0;
- }
- /* Walk counterclockwise about the vertex. */
- onextself(neighbor);
- }
- /* If we reached a boundary, we must walk clockwise as well. */
- if (neighbor.tri == m->dummytri) {
- /* Walk clockwise about the vertex. */
- oprev(testtri, neighbor);
- /* Stop upon reaching a boundary. */
- while (neighbor.tri != m->dummytri) {
- if (infected(neighbor)) {
- /* Mark the corner of this triangle as having been tested. */
- setorg(neighbor, NULL);
- }
- else {
- /* A live triangle. The vertex survives. */
- killorg = 0;
- }
- /* Walk clockwise about the vertex. */
- oprevself(neighbor);
- }
- }
- if (killorg) {
- if (b->verbose > 1) {
- printf(" Deleting vertex (%.12g, %.12g)\n", testvertex[0], testvertex[1]);
- }
- setvertextype(testvertex, UNDEADVERTEX);
- m->undeads++;
- }
- }
- }
-
- /* Record changes in the number of boundary edges, and disconnect */
- /* dead triangles from their neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- sym(testtri, neighbor);
- if (neighbor.tri == m->dummytri) {
- /* There is no neighboring triangle on this edge, so this edge */
- /* is a boundary edge. This triangle is being deleted, so this */
- /* boundary edge is deleted. */
- m->hullsize--;
- }
- else {
- /* Disconnect the triangle from its neighbor. */
- dissolve(neighbor);
- /* There is a neighboring triangle on this edge, so this edge */
- /* becomes a boundary edge when this triangle is deleted. */
- m->hullsize++;
- }
- }
- /* Return the dead triangle to the pool of triangles. */
- triangledealloc(m, testtri.tri);
- virusloop = (triangle **) traverse(&m->viri);
- }
- /* Empty the virus pool. */
- poolrestart(&m->viri);
-}
-
-/*****************************************************************************/
-/* */
-/* regionplague() Spread regional attributes and/or area constraints */
-/* (from a .poly file) throughout the mesh. */
-/* */
-/* This procedure operates in two phases. The first phase spreads an */
-/* attribute and/or an area constraint through a (segment-bounded) region. */
-/* The triangles are marked to ensure that each triangle is added to the */
-/* virus pool only once, so the procedure will terminate. */
-/* */
-/* The second phase uninfects all infected triangles, returning them to */
-/* normal. */
-/* */
-/*****************************************************************************/
-
-void regionplague(struct mesh *m, struct behavior *b, REAL attribute, REAL area) {
- struct otri testtri;
- struct otri neighbor;
- triangle **virusloop;
- triangle **regiontri;
- struct osub neighborsubseg;
- vertex regionorg, regiondest, regionapex;
- triangle ptr; /* Temporary variable used by sym() and onext(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (b->verbose > 1) {
- printf(" Marking neighbors of marked triangles.\n");
- }
- /* Loop through all the infected triangles, spreading the attribute */
- /* and/or area constraint to their neighbors, then to their neighbors' */
- /* neighbors. */
- traversalinit(&m->viri);
- virusloop = (triangle **) traverse(&m->viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- /* A triangle is marked as infected by messing with one of its pointers */
- /* to subsegments, setting it to an illegal value. Hence, we have to */
- /* temporarily uninfect this triangle so that we can examine its */
- /* adjacent subsegments. */
- uninfect(testtri);
- if (b->regionattrib) {
- /* Set an attribute. */
- setelemattribute(testtri, m->eextras, attribute);
- }
- if (b->vararea) {
- /* Set an area constraint. */
- setareabound(testtri, area);
- }
- if (b->verbose > 2) {
- /* Assign the triangle an orientation for convenience in */
- /* checking its vertices. */
- testtri.orient = 0;
- org(testtri, regionorg);
- dest(testtri, regiondest);
- apex(testtri, regionapex);
- printf( " Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
- regionorg[0], regionorg[1], regiondest[0], regiondest[1],
- regionapex[0], regionapex[1]);
- }
- /* Check each of the triangle's three neighbors. */
- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
- /* Find the neighbor. */
- sym(testtri, neighbor);
- /* Check for a subsegment between the triangle and its neighbor. */
- tspivot(testtri, neighborsubseg);
- /* Make sure the neighbor exists, is not already infected, and */
- /* isn't protected by a subsegment. */
- if ((neighbor.tri != m->dummytri) && !infected(neighbor)
- && (neighborsubseg.ss == m->dummysub)) {
- if (b->verbose > 2) {
- org(neighbor, regionorg);
- dest(neighbor, regiondest);
- apex(neighbor, regionapex);
- printf( " Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
- regionorg[0], regionorg[1], regiondest[0], regiondest[1],
- regionapex[0], regionapex[1]);
- }
- /* Infect the neighbor. */
- infect(neighbor);
- /* Ensure that the neighbor's neighbors will be infected. */
- regiontri = (triangle **) poolalloc(&m->viri);
- *regiontri = neighbor.tri;
- }
- }
- /* Remark the triangle as infected, so it doesn't get added to the */
- /* virus pool again. */
- infect(testtri);
- virusloop = (triangle **) traverse(&m->viri);
- }
-
- /* Uninfect all triangles. */
- if (b->verbose > 1) {
- printf(" Unmarking marked triangles.\n");
- }
- traversalinit(&m->viri);
- virusloop = (triangle **) traverse(&m->viri);
- while (virusloop != (triangle **) NULL) {
- testtri.tri = *virusloop;
- uninfect(testtri);
- virusloop = (triangle **) traverse(&m->viri);
- }
- /* Empty the virus pool. */
- poolrestart(&m->viri);
-}
-
-/*****************************************************************************/
-/* */
-/* carveholes() Find the holes and infect them. Find the area */
-/* constraints and infect them. Infect the convex hull. */
-/* Spread the infection and kill triangles. Spread the */
-/* area constraints. */
-/* */
-/* This routine mainly calls other routines to carry out all these */
-/* functions. */
-/* */
-/*****************************************************************************/
-
-void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes, REAL *regionlist,
- int regions) {
- struct otri searchtri;
- struct otri triangleloop;
- struct otri *regiontris;
- triangle **holetri;
- triangle **regiontri;
- vertex searchorg, searchdest;
- enum locateresult intersect;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (!(b->quiet || (b->noholes && b->convex))) {
- printf("Removing unwanted triangles.\n");
- if (b->verbose && (holes > 0)) {
- printf(" Marking holes for elimination.\n");
- }
- }
-
- if (regions > 0) {
- /* Allocate storage for the triangles in which region points fall. */
- regiontris = (struct otri *) trimalloc(regions * (int) sizeof(struct otri));
- }
- else {
- regiontris = (struct otri *) NULL;
- }
-
- if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
- /* Initialize a pool of viri to be used for holes, concavities, */
- /* regional attributes, and/or regional area constraints. */
- poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
- }
-
- if (!b->convex) {
- /* Mark as infected any unprotected triangles on the boundary. */
- /* This is one way by which concavities are created. */
- infecthull(m, b);
- }
-
- if ((holes > 0) && !b->noholes) {
- /* Infect each triangle in which a hole lies. */
- for (i = 0; i < 2 * holes; i += 2) {
- /* Ignore holes that aren't within the bounds of the mesh. */
- if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax) && (holelist[i + 1] >= m->ymin)
- && (holelist[i + 1] <= m->ymax)) {
- /* Start searching from some triangle on the outer boundary. */
- searchtri.tri = m->dummytri;
- searchtri.orient = 0;
- symself(searchtri);
- /* Ensure that the hole is to the left of this boundary edge; */
- /* otherwise, locate() will falsely report that the hole */
- /* falls within the starting triangle. */
- org(searchtri, searchorg);
- dest(searchtri, searchdest);
- if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) > 0.0) {
- /* Find a triangle that contains the hole. */
- intersect = locate(m, b, &holelist[i], &searchtri);
- if ((intersect != OUTSIDE) && (!infected(searchtri))) {
- /* Infect the triangle. This is done by marking the triangle */
- /* as infected and including the triangle in the virus pool. */
- infect(searchtri);
- holetri = (triangle **) poolalloc(&m->viri);
- *holetri = searchtri.tri;
- }
- }
- }
- }
- }
-
- /* Now, we have to find all the regions BEFORE we carve the holes, because */
- /* locate() won't work when the triangulation is no longer convex. */
- /* (Incidentally, this is the reason why regional attributes and area */
- /* constraints can't be used when refining a preexisting mesh, which */
- /* might not be convex; they can only be used with a freshly */
- /* triangulated PSLG.) */
- if (regions > 0) {
- /* Find the starting triangle for each region. */
- for (i = 0; i < regions; i++) {
- regiontris[i].tri = m->dummytri;
- /* Ignore region points that aren't within the bounds of the mesh. */
- if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax)
- && (regionlist[4 * i + 1] >= m->ymin) && (regionlist[4 * i + 1] <= m->ymax)) {
- /* Start searching from some triangle on the outer boundary. */
- searchtri.tri = m->dummytri;
- searchtri.orient = 0;
- symself(searchtri);
- /* Ensure that the region point is to the left of this boundary */
- /* edge; otherwise, locate() will falsely report that the */
- /* region point falls within the starting triangle. */
- org(searchtri, searchorg);
- dest(searchtri, searchdest);
- if (counterclockwise(m, b, searchorg, searchdest, ®ionlist[4 * i]) > 0.0) {
- /* Find a triangle that contains the region point. */
- intersect = locate(m, b, ®ionlist[4 * i], &searchtri);
- if ((intersect != OUTSIDE) && (!infected(searchtri))) {
- /* Record the triangle for processing after the */
- /* holes have been carved. */
- otricopy(searchtri, regiontris[i]);
- }
- }
- }
- }
- }
-
- if (m->viri.items > 0) {
- /* Carve the holes and concavities. */
- plague(m, b);
- }
- /* The virus pool should be empty now. */
-
- if (regions > 0) {
- if (!b->quiet) {
- if (b->regionattrib) {
- if (b->vararea) {
- printf("Spreading regional attributes and area constraints.\n");
- }
- else {
- printf("Spreading regional attributes.\n");
- }
- }
- else {
- printf("Spreading regional area constraints.\n");
- }
- }
- if (b->regionattrib && !b->refine) {
- /* Assign every triangle a regional attribute of zero. */
- traversalinit(&m->triangles);
- triangleloop.orient = 0;
- triangleloop.tri = triangletraverse(m);
- while (triangleloop.tri != (triangle *) NULL) {
- setelemattribute(triangleloop, m->eextras, 0.0);
- triangleloop.tri = triangletraverse(m);
- }
- }
- for (i = 0; i < regions; i++) {
- if (regiontris[i].tri != m->dummytri) {
- /* Make sure the triangle under consideration still exists. */
- /* It may have been eaten by the virus. */
- if (!deadtri(regiontris[i].tri)) {
- /* Put one triangle in the virus pool. */
- infect(regiontris[i]);
- regiontri = (triangle **) poolalloc(&m->viri);
- *regiontri = regiontris[i].tri;
- /* Apply one region's attribute and/or area constraint. */
- regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
- /* The virus pool should be empty now. */
- }
- }
- }
- if (b->regionattrib && !b->refine) {
- /* Note the fact that each triangle has an additional attribute. */
- m->eextras++;
- }
- }
-
- /* Free up memory. */
- if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
- pooldeinit(&m->viri);
- }
- if (regions > 0) {
- trifree((VOID *) regiontris);
- }
-}
-
-/** **/
-/** **/
-/********* Carving out holes and concavities ends here *********/
-
-/*****************************************************************************/
-/* */
-/* highorder() Create extra nodes for quadratic subparametric elements. */
-/* */
-/*****************************************************************************/
-
-void highorder(struct mesh *m, struct behavior *b) {
- struct otri triangleloop, trisym;
- struct osub checkmark;
- vertex newvertex;
- vertex torg, tdest;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (!b->quiet) {
- printf("Adding vertices for second-order triangles.\n");
- }
- /* The following line ensures that dead items in the pool of nodes */
- /* cannot be allocated for the extra nodes associated with high */
- /* order elements. This ensures that the primary nodes (at the */
- /* corners of elements) will occur earlier in the output files, and */
- /* have lower indices, than the extra nodes. */
- m->vertices.deaditemstack = (VOID *) NULL;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- /* To loop over the set of edges, loop over all triangles, and look at */
- /* the three edges of each triangle. If there isn't another triangle */
- /* adjacent to the edge, operate on the edge. If there is another */
- /* adjacent triangle, operate on the edge only if the current triangle */
- /* has a smaller pointer than its neighbor. This way, each edge is */
- /* considered only once. */
- while (triangleloop.tri != (triangle *) NULL) {
- for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
- sym(triangleloop, trisym);
- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
- org(triangleloop, torg);
- dest(triangleloop, tdest);
- /* Create a new node in the middle of the edge. Interpolate */
- /* its attributes. */
- newvertex = (vertex) poolalloc(&m->vertices);
- for (i = 0; i < 2 + m->nextras; i++) {
- newvertex[i] = 0.5 * (torg[i] + tdest[i]);
- }
- /* Set the new node's marker to zero or one, depending on */
- /* whether it lies on a boundary. */
- setvertexmark(newvertex, trisym.tri == m->dummytri);
- setvertextype(newvertex, trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
- if (b->usesegments) {
- tspivot(triangleloop, checkmark);
- /* If this edge is a segment, transfer the marker to the new node. */
- if (checkmark.ss != m->dummysub) {
- setvertexmark(newvertex, mark(checkmark));
- setvertextype(newvertex, SEGMENTVERTEX);
- }
- }
- if (b->verbose > 1) {
- printf(" Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
- }
- /* Record the new node in the (one or two) adjacent elements. */
- triangleloop.tri[m->highorderindex + triangleloop.orient] = (triangle) newvertex;
- if (trisym.tri != m->dummytri) {
- trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
- }
- }
- }
- triangleloop.tri = triangletraverse(m);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* transfernodes() Read the vertices from memory. */
-/* */
-/*****************************************************************************/
-
-void transfernodes(struct mesh *m, struct behavior *b, IO_REAL *pointlist, IO_REAL *pointattriblist,
- int *pointmarkerlist, int numberofpoints, int numberofpointattribs) {
- vertex vertexloop;
- REAL x, y;
- int i, j;
- int coordindex;
- int attribindex;
-
- m->invertices = numberofpoints;
- m->mesh_dim = 2;
- m->nextras = numberofpointattribs;
- m->readnodefile = 0;
- if (m->invertices < 3) {
- printf("Error: Input must have at least three input vertices.\n");
- triexit(1);
- }
- if (m->nextras == 0) {
- b->weighted = 0;
- }
-
- initializevertexpool(m, b);
-
- /* Read the vertices. */
- coordindex = 0;
- attribindex = 0;
- for (i = 0; i < m->invertices; i++) {
- vertexloop = (vertex) poolalloc(&m->vertices);
- /* Read the vertex coordinates. */
- x = vertexloop[0] = pointlist[coordindex++];
- y = vertexloop[1] = pointlist[coordindex++];
- /* Read the vertex attributes. */
- for (j = 0; j < numberofpointattribs; j++) {
- vertexloop[2 + j] = pointattriblist[attribindex++];
- }
- if (pointmarkerlist != (int *) NULL) {
- /* Read a vertex marker. */
- setvertexmark(vertexloop, pointmarkerlist[i]);
- }
- else {
- /* If no markers are specified, they default to zero. */
- setvertexmark(vertexloop, 0);
- }
-
- // ----------------------------------------------
-// for (j = (i - 1) * 2; j >= 0; j -= 2){
-// if (x == pointlist[j] && y == pointlist[j+1]){
-// printf("skip duplicate %d\n", j >> 1);
-// setvertextype(vertexloop, UNDEADVERTEX);
-// m->undeads++;
-//
-// vertexloop[0] = 0xffffffff;
-// vertexloop[1] = 0xffffffff;
-// break;
-// }
-// }
-
- if (j >= 0)
- continue;
- // ----------------------------------------------
-
- setvertextype(vertexloop, INPUTVERTEX);
- /* Determine the smallest and largest x and y coordinates. */
- if (i == 0) {
- m->xmin = m->xmax = x;
- m->ymin = m->ymax = y;
- }
- else {
- m->xmin = (x < m->xmin) ? x : m->xmin;
- m->xmax = (x > m->xmax) ? x : m->xmax;
- m->ymin = (y < m->ymin) ? y : m->ymin;
- m->ymax = (y > m->ymax) ? y : m->ymax;
- }
- }
-
- /* Nonexistent x value used as a flag to mark circle events in sweepline */
- /* Delaunay algorithm. */
- m->xminextreme = 10 * m->xmin - 9 * m->xmax;
-}
-
-/*****************************************************************************/
-/* */
-/* writenodes() Number the vertices and write them to a .node file. */
-/* */
-/* To save memory, the vertex numbers are written over the boundary markers */
-/* after the vertices are written to a file. */
-/* */
-/*****************************************************************************/
-
-void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist, REAL **pointattriblist,
- int **pointmarkerlist) {
- REAL *plist;
- REAL *palist;
- int *pmlist;
- int coordindex;
- int attribindex;
- vertex vertexloop;
- long outvertices;
- int vertexnumber;
- int i;
-
- if (b->jettison) {
- outvertices = m->vertices.items - m->undeads;
- }
- else {
- outvertices = m->vertices.items;
- }
-
- if (!b->quiet) {
- printf("Writing vertices.\n");
- }
- /* Allocate memory for output vertices if necessary. */
- if (*pointlist == (REAL *) NULL) {
- *pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));
- }
- /* Allocate memory for output vertex attributes if necessary. */
- if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
- *pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras * sizeof(REAL)));
- }
- /* Allocate memory for output vertex markers if necessary. */
- if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
- *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
- }
- plist = *pointlist;
- palist = *pointattriblist;
- pmlist = *pointmarkerlist;
- coordindex = 0;
- attribindex = 0;
-
- traversalinit(&m->vertices);
- vertexnumber = b->firstnumber;
- vertexloop = vertextraverse(m);
- while (vertexloop != (vertex) NULL) {
- if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
- /* X and y coordinates. */
- plist[coordindex++] = vertexloop[0];
- plist[coordindex++] = vertexloop[1];
- /* Vertex attributes. */
- for (i = 0; i < m->nextras; i++) {
- palist[attribindex++] = vertexloop[2 + i];
- }
- if (!b->nobound) {
- /* Copy the boundary marker. */
- pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
- }
- setvertexmark(vertexloop, vertexnumber);
- vertexnumber++;
- }
- vertexloop = vertextraverse(m);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* numbernodes() Number the vertices. */
-/* */
-/* Each vertex is assigned a marker equal to its number. */
-/* */
-/* Used when writenodes() is not called because no .node file is written. */
-/* */
-/*****************************************************************************/
-
-void numbernodes(struct mesh *m, struct behavior *b) {
- vertex vertexloop;
- int vertexnumber;
-
- traversalinit(&m->vertices);
- vertexnumber = b->firstnumber;
- vertexloop = vertextraverse(m);
- while (vertexloop != (vertex) NULL) {
- setvertexmark(vertexloop, vertexnumber);
- if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
- vertexnumber++;
- }
- vertexloop = vertextraverse(m);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* writeelements() Write the triangles to an .ele file. */
-/* */
-/*****************************************************************************/
-
-void writeelements(struct mesh *m, struct behavior *b, INDICE **trianglelist,
- REAL **triangleattriblist) {
- INDICE *tlist;
- REAL *talist;
- int vertexindex;
- int attribindex;
- struct otri triangleloop;
- vertex p1, p2, p3;
- vertex mid1, mid2, mid3;
- long elementnumber;
- int i;
-
- if (!b->quiet) {
- printf("Writing triangles.\n");
- }
- /* Allocate memory for output triangles if necessary. */
- if (*trianglelist == (INDICE *) NULL) {
- *trianglelist = (INDICE *) trimalloc(
- (INDICE) (m->triangles.items * ((b->order + 1) * (b->order + 2) / 2) * sizeof(int)));
- }
- /* Allocate memory for output triangle attributes if necessary. */
- if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
- *triangleattriblist = (REAL *) trimalloc(
- (int) (m->triangles.items * m->eextras * sizeof(REAL)));
- }
- tlist = *trianglelist;
- talist = *triangleattriblist;
- vertexindex = 0;
- attribindex = 0;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- triangleloop.orient = 0;
- elementnumber = b->firstnumber;
- while (triangleloop.tri != (triangle *) NULL) {
- org(triangleloop, p1);
- dest(triangleloop, p2);
- apex(triangleloop, p3);
- if (b->order == 1) {
- tlist[vertexindex++] = vertexmark(p1);
- tlist[vertexindex++] = vertexmark(p2);
- tlist[vertexindex++] = vertexmark(p3);
- }
- else {
- mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
- mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
- mid3 = (vertex) triangleloop.tri[m->highorderindex];
- tlist[vertexindex++] = vertexmark(p1);
- tlist[vertexindex++] = vertexmark(p2);
- tlist[vertexindex++] = vertexmark(p3);
- tlist[vertexindex++] = vertexmark(mid1);
- tlist[vertexindex++] = vertexmark(mid2);
- tlist[vertexindex++] = vertexmark(mid3);
- }
-
- for (i = 0; i < m->eextras; i++) {
- talist[attribindex++] = elemattribute(triangleloop, i);
- }
-
- triangleloop.tri = triangletraverse(m);
- elementnumber++;
- }
-}
-
-/*****************************************************************************/
-/* */
-/* writepoly() Write the segments and holes to a .poly file. */
-/* */
-/*****************************************************************************/
-
-void writepoly(struct mesh *m, struct behavior *b, int **segmentlist, int **segmentmarkerlist) {
- int *slist;
- int *smlist;
- int index;
- struct osub subsegloop;
- vertex endpoint1, endpoint2;
- long subsegnumber;
-
- if (!b->quiet) {
- printf("Writing segments.\n");
- }
- /* Allocate memory for output segments if necessary. */
- if (*segmentlist == (int *) NULL) {
- *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 * sizeof(int)));
- }
- /* Allocate memory for output segment markers if necessary. */
- if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
- *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items * sizeof(int)));
- }
- slist = *segmentlist;
- smlist = *segmentmarkerlist;
- index = 0;
-
- traversalinit(&m->subsegs);
- subsegloop.ss = subsegtraverse(m);
- subsegloop.ssorient = 0;
- subsegnumber = b->firstnumber;
- while (subsegloop.ss != (subseg *) NULL) {
- sorg(subsegloop, endpoint1);
- sdest(subsegloop, endpoint2);
- /* Copy indices of the segment's two endpoints. */
- slist[index++] = vertexmark(endpoint1);
- slist[index++] = vertexmark(endpoint2);
- if (!b->nobound) {
- /* Copy the boundary marker. */
- smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
- }
-
- subsegloop.ss = subsegtraverse(m);
- subsegnumber++;
- }
-}
-
-/*****************************************************************************/
-/* */
-/* writeedges() Write the edges to an .edge file. */
-/* */
-/*****************************************************************************/
-
-void writeedges(struct mesh *m, struct behavior *b, int **edgelist, int **edgemarkerlist) {
- int *elist;
- int *emlist;
- int index;
- struct otri triangleloop, trisym;
- struct osub checkmark;
- vertex p1, p2;
- long edgenumber;
- triangle ptr; /* Temporary variable used by sym(). */
- subseg sptr; /* Temporary variable used by tspivot(). */
-
- if (!b->quiet) {
- printf("Writing edges.\n");
- }
- /* Allocate memory for edges if necessary. */
- if (*edgelist == (int *) NULL) {
- *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
- }
- /* Allocate memory for edge markers if necessary. */
- if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
- *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
- }
- elist = *edgelist;
- emlist = *edgemarkerlist;
- index = 0;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- edgenumber = b->firstnumber;
- /* To loop over the set of edges, loop over all triangles, and look at */
- /* the three edges of each triangle. If there isn't another triangle */
- /* adjacent to the edge, operate on the edge. If there is another */
- /* adjacent triangle, operate on the edge only if the current triangle */
- /* has a smaller pointer than its neighbor. This way, each edge is */
- /* considered only once. */
- while (triangleloop.tri != (triangle *) NULL) {
- for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
- sym(triangleloop, trisym);
- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
- org(triangleloop, p1);
- dest(triangleloop, p2);
- elist[index++] = vertexmark(p1);
- elist[index++] = vertexmark(p2);
- if (b->nobound) {
- }
- else {
- /* Edge number, indices of two endpoints, and a boundary marker. */
- /* If there's no subsegment, the boundary marker is zero. */
- if (b->usesegments) {
- tspivot(triangleloop, checkmark);
- if (checkmark.ss == m->dummysub) {
- emlist[edgenumber - b->firstnumber] = 0;
- }
- else {
- emlist[edgenumber - b->firstnumber] = mark(checkmark);
- }
- }
- else {
- emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
- }
- }
- edgenumber++;
- }
- }
- triangleloop.tri = triangletraverse(m);
- }
-}
-
-/*****************************************************************************/
-/* */
-/* writevoronoi() Write the Voronoi diagram to a .v.node and .v.edge */
-/* file. */
-/* */
-/* The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
-/* Hence, the Voronoi vertices are listed by traversing the Delaunay */
-/* triangles, and the Voronoi edges are listed by traversing the Delaunay */
-/* edges. */
-/* */
-/* WARNING: In order to assign numbers to the Voronoi vertices, this */
-/* procedure messes up the subsegments or the extra nodes of every */
-/* element. Hence, you should call this procedure last. */
-/* */
-/*****************************************************************************/
-
-void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist, REAL **vpointattriblist,
- int **vpointmarkerlist, int **vedgelist, int **vedgemarkerlist, REAL **vnormlist) {
- REAL *plist;
- REAL *palist;
- int *elist;
- REAL *normlist;
- int coordindex;
- int attribindex;
- struct otri triangleloop, trisym;
- vertex torg, tdest, tapex;
- REAL circumcenter[2];
- REAL xi, eta;
- long vnodenumber, vedgenumber;
- int p1, p2;
- int i;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (!b->quiet) {
- printf("Writing Voronoi vertices.\n");
- }
- /* Allocate memory for Voronoi vertices if necessary. */
- if (*vpointlist == (REAL *) NULL) {
- *vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 * sizeof(REAL)));
- }
- /* Allocate memory for Voronoi vertex attributes if necessary. */
- if (*vpointattriblist == (REAL *) NULL) {
- *vpointattriblist = (REAL *) trimalloc(
- (int) (m->triangles.items * m->nextras * sizeof(REAL)));
- }
- *vpointmarkerlist = (int *) NULL;
- plist = *vpointlist;
- palist = *vpointattriblist;
- coordindex = 0;
- attribindex = 0;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- triangleloop.orient = 0;
- vnodenumber = b->firstnumber;
- while (triangleloop.tri != (triangle *) NULL) {
- org(triangleloop, torg);
- dest(triangleloop, tdest);
- apex(triangleloop, tapex);
- findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
- /* X and y coordinates. */
- plist[coordindex++] = circumcenter[0];
- plist[coordindex++] = circumcenter[1];
- for (i = 2; i < 2 + m->nextras; i++) {
- /* Interpolate the vertex attributes at the circumcenter. */
- palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i]) + eta * (tapex[i] - torg[i]);
- }
-
- *(int *) (triangleloop.tri + 6) = (int) vnodenumber;
- triangleloop.tri = triangletraverse(m);
- vnodenumber++;
- }
-
- if (!b->quiet) {
- printf("Writing Voronoi edges.\n");
- }
- /* Allocate memory for output Voronoi edges if necessary. */
- if (*vedgelist == (int *) NULL) {
- *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
- }
- *vedgemarkerlist = (int *) NULL;
- /* Allocate memory for output Voronoi norms if necessary. */
- if (*vnormlist == (REAL *) NULL) {
- *vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));
- }
- elist = *vedgelist;
- normlist = *vnormlist;
- coordindex = 0;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- vedgenumber = b->firstnumber;
- /* To loop over the set of edges, loop over all triangles, and look at */
- /* the three edges of each triangle. If there isn't another triangle */
- /* adjacent to the edge, operate on the edge. If there is another */
- /* adjacent triangle, operate on the edge only if the current triangle */
- /* has a smaller pointer than its neighbor. This way, each edge is */
- /* considered only once. */
- while (triangleloop.tri != (triangle *) NULL) {
- for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
- sym(triangleloop, trisym);
- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
- /* Find the number of this triangle (and Voronoi vertex). */
- p1 = *(int *) (triangleloop.tri + 6);
- if (trisym.tri == m->dummytri) {
- org(triangleloop, torg);
- dest(triangleloop, tdest);
- /* Copy an infinite ray. Index of one endpoint, and -1. */
- elist[coordindex] = p1;
- normlist[coordindex++] = tdest[1] - torg[1];
- elist[coordindex] = -1;
- normlist[coordindex++] = torg[0] - tdest[0];
- }
- else {
- /* Find the number of the adjacent triangle (and Voronoi vertex). */
- p2 = *(int *) (trisym.tri + 6);
- /* Finite edge. Write indices of two endpoints. */
- elist[coordindex] = p1;
- normlist[coordindex++] = 0.0;
- elist[coordindex] = p2;
- normlist[coordindex++] = 0.0;
- }
- vedgenumber++;
- }
- }
- triangleloop.tri = triangletraverse(m);
- }
-}
-
-void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist) {
- int *nlist;
- int index;
- struct otri triangleloop, trisym;
- long elementnumber;
- int neighbor1, neighbor2, neighbor3;
- triangle ptr; /* Temporary variable used by sym(). */
-
- if (!b->quiet) {
- printf("Writing neighbors.\n");
- }
- /* Allocate memory for neighbors if necessary. */
- if (*neighborlist == (int *) NULL) {
- *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 * sizeof(int)));
- }
- nlist = *neighborlist;
- index = 0;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- triangleloop.orient = 0;
- elementnumber = b->firstnumber;
- while (triangleloop.tri != (triangle *) NULL) {
- *(int *) (triangleloop.tri + 6) = (int) elementnumber;
- triangleloop.tri = triangletraverse(m);
- elementnumber++;
- }
- *(int *) (m->dummytri + 6) = -1;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- elementnumber = b->firstnumber;
- while (triangleloop.tri != (triangle *) NULL) {
- triangleloop.orient = 1;
- sym(triangleloop, trisym);
- neighbor1 = *(int *) (trisym.tri + 6);
- triangleloop.orient = 2;
- sym(triangleloop, trisym);
- neighbor2 = *(int *) (trisym.tri + 6);
- triangleloop.orient = 0;
- sym(triangleloop, trisym);
- neighbor3 = *(int *) (trisym.tri + 6);
- nlist[index++] = neighbor1;
- nlist[index++] = neighbor2;
- nlist[index++] = neighbor3;
-
- triangleloop.tri = triangletraverse(m);
- elementnumber++;
- }
-}
-
-/** **/
-/** **/
-/********* File I/O routines end here *********/
-
-/*****************************************************************************/
-/* */
-/* main() or triangulate() Gosh, do everything. */
-/* */
-/* The sequence is roughly as follows. Many of these steps can be skipped, */
-/* depending on the command line switches. */
-/* */
-/* - Initialize constants and parse the command line. */
-/* - Read the vertices from a file and either */
-/* - triangulate them (no -r), or */
-/* - read an old mesh from files and reconstruct it (-r). */
-/* - Insert the PSLG segments (-p), and possibly segments on the convex */
-/* hull (-c). */
-/* - Read the holes (-p), regional attributes (-pA), and regional area */
-/* constraints (-pa). Carve the holes and concavities, and spread the */
-/* regional attributes and area constraints. */
-/* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */
-/* Also enforce the conforming Delaunay property (-q and -a). */
-/* - Compute the number of edges in the resulting mesh. */
-/* - Promote the mesh's linear triangles to higher order elements (-o). */
-/* - Write the output files and print the statistics. */
-/* - Check the consistency and Delaunay property of the mesh (-C). */
-/* */
-/*****************************************************************************/
-
-void triangulate(struct behavior *command, struct triangulateio *in, struct triangulateio *out,
- struct triangulateio *vorout) {
- struct mesh m;
- struct behavior *b = command;
- REAL *holearray; /* Array of holes. */
- REAL *regionarray; /* Array of regional attributes and area constraints. */
-
- triangleinit(&m);
- //parsecommandline(1, &triswitches, &b);
- m.steinerleft = b->steiner;
-
- transfernodes(&m, b, in->pointlist, in->pointattributelist, in->pointmarkerlist,
- in->numberofpoints, in->numberofpointattributes);
-
-#ifdef CDT_ONLY
- m.hullsize = delaunay(&m, b); /* Triangulate the vertices. */
-#else /* not CDT_ONLY */
- if (b->refine)
- {
- /* Read and reconstruct a mesh. */
- m.hullsize = reconstruct(&m, b, in->trianglelist,
- in->triangleattributelist, in->trianglearealist,
- in->numberoftriangles, in->numberofcorners,
- in->numberoftriangleattributes,
- in->segmentlist, in->segmentmarkerlist,
- in->numberofsegments);
- }
- else
- {
- m.hullsize = delaunay(&m, b); /* Triangulate the vertices. */
- }
-#endif /* not CDT_ONLY */
-
- /* Ensure that no vertex can be mistaken for a triangular bounding */
- /* box vertex in insertvertex(). */
- m.infvertex1 = (vertex) NULL;
- m.infvertex2 = (vertex) NULL;
- m.infvertex3 = (vertex) NULL;
-
- if (b->usesegments) {
- m.checksegments = 1; /* Segments will be introduced next. */
- if (!b->refine) {
- /* Insert PSLG segments and/or convex hull segments. */
- formskeleton(&m, b, in->segmentlist, in->segmentmarkerlist, in->numberofsegments);
- if (error_set)
- return;
- }
- }
-
- if (b->poly && (m.triangles.items > 0)) {
- holearray = in->holelist;
- m.holes = in->numberofholes;
- regionarray = in->regionlist;
- m.regions = in->numberofregions;
- if (!b->refine) {
- /* Carve out holes and concavities. */
- carveholes(&m, b, holearray, m.holes, regionarray, m.regions);
- }
- }
- else {
- /* Without a PSLG, there can be no holes or regional attributes */
- /* or area constraints. The following are set to zero to avoid */
- /* an accidental free() later. */
- m.holes = 0;
- m.regions = 0;
- }
-
-#ifndef CDT_ONLY
- if (b->quality && (m.triangles.items > 0))
- {
- enforcequality(&m, b); /* Enforce angle and area constraints. */
- }
-#endif /* not CDT_ONLY */
-
-#ifndef CDT_ONLY
- if (b->quality)
- {
- printf("Quality milliseconds: %ld\n",
- 1000l * (tv5.tv_sec - tv4.tv_sec) +
- (tv5.tv_usec - tv4.tv_usec) / 1000l);
- }
-#endif /* not CDT_ONLY */
-
- /* Calculate the number of edges. */
- m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
-
- if (b->order > 1) {
- highorder(&m, b); /* Promote elements to higher polynomial order. */
- }
- if (!b->quiet) {
- printf("\n");
- }
-
- if (b->jettison) {
- out->numberofpoints = m.vertices.items - m.undeads;
- }
- else {
- out->numberofpoints = m.vertices.items;
- }
- out->numberofpointattributes = m.nextras;
- out->numberoftriangles = m.triangles.items;
- out->numberofcorners = (b->order + 1) * (b->order + 2) / 2;
- out->numberoftriangleattributes = m.eextras;
- out->numberofedges = m.edges;
- if (b->usesegments) {
- out->numberofsegments = m.subsegs.items;
- }
- else {
- out->numberofsegments = m.hullsize;
- }
- if (vorout != (struct triangulateio *) NULL) {
- vorout->numberofpoints = m.triangles.items;
- vorout->numberofpointattributes = m.nextras;
- vorout->numberofedges = m.edges;
- }
-
- /* If not using iteration numbers, don't write a .node file if one was */
- /* read, because the original one would be overwritten! */
- if (b->nonodewritten || (b->noiterationnum && m.readnodefile)) {
- if (!b->quiet) {
- printf("NOT writing vertices.\n");
- }
- numbernodes(&m, b); /* We must remember to number the vertices. */
- }
- //else {
- /* writenodes() numbers the vertices too. */
- // writenodes(&m, b, &out->pointlist, &out->pointattributelist, &out->pointmarkerlist);
- //}
- if (b->noelewritten) {
- if (!b->quiet) {
- printf("NOT writing triangles.\n");
- }
- }
- else {
- writeelements(&m, b, &out->trianglelist, &out->triangleattributelist);
- }
- /* The -c switch (convex switch) causes a PSLG to be written */
- /* even if none was read. */
- if (b->poly || b->convex) {
- /* If not using iteration numbers, don't overwrite the .poly file. */
- if (b->nopolywritten || b->noiterationnum) {
- if (!b->quiet) {
- printf("NOT writing segments.\n");
- }
- }
- else {
- writepoly(&m, b, &out->segmentlist, &out->segmentmarkerlist);
- out->numberofholes = m.holes;
- out->numberofregions = m.regions;
- if (b->poly) {
- out->holelist = in->holelist;
- out->regionlist = in->regionlist;
- }
- else {
- out->holelist = NULL;
- out->regionlist = NULL;
- }
- }
- }
- if (b->edgesout) {
- writeedges(&m, b, &out->edgelist, &out->edgemarkerlist);
- }
-
- //if (b->voronoi) {
- // writevoronoi(&m, b, &vorout->pointlist, &vorout->pointattributelist, &vorout->pointmarkerlist,
- // &vorout->edgelist, &vorout->edgemarkerlist, &vorout->normlist);
- //}
- if (b->neighbors) {
- writeneighbors(&m, b, &out->neighborlist);
- }
-
- if (!b->quiet) {
- statistics(&m, b);
- }
-
-#ifndef REDUCED
- if (b->docheck)
- {
- checkmesh(&m, b);
- checkdelaunay(&m, b);
- }
-#endif /* not REDUCED */
-
- triangledeinit(&m, b);
-}
diff --git a/vtm/jni/triangle/triangle.h b/vtm/jni/triangle/triangle.h
deleted file mode 100644
index c0fcc115..00000000
--- a/vtm/jni/triangle/triangle.h
+++ /dev/null
@@ -1,362 +0,0 @@
-/*****************************************************************************/
-/* */
-/* (triangle.h) */
-/* */
-/* Include file for programs that call Triangle. */
-/* */
-/* Accompanies Triangle Version 1.6 */
-/* July 28, 2005 */
-/* */
-/* Copyright 1996, 2005 */
-/* Jonathan Richard Shewchuk */
-/* 2360 Woolsey #H */
-/* Berkeley, California 94705-1927 */
-/* jrs@cs.berkeley.edu */
-/* */
-/*****************************************************************************/
-
-/*****************************************************************************/
-/* */
-/* How to call Triangle from another program */
-/* */
-/* */
-/* If you haven't read Triangle's instructions (run "triangle -h" to read */
-/* them), you won't understand what follows. */
-/* */
-/* Triangle must be compiled into an object file (triangle.o) with the */
-/* TRILIBRARY symbol defined (generally by using the -DTRILIBRARY compiler */
-/* switch). The makefile included with Triangle will do this for you if */
-/* you run "make trilibrary". The resulting object file can be called via */
-/* the procedure triangulate(). */
-/* */
-/* If the size of the object file is important to you, you may wish to */
-/* generate a reduced version of triangle.o. The REDUCED symbol gets rid */
-/* of all features that are primarily of research interest. Specifically, */
-/* the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches. */
-/* The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond */
-/* constrained Delaunay triangulation. Specifically, the -DCDT_ONLY switch */
-/* eliminates Triangle's -r, -q, -a, -u, -D, -Y, -S, and -s switches. */
-/* */
-/* IMPORTANT: These definitions (TRILIBRARY, REDUCED, CDT_ONLY) must be */
-/* made in the makefile or in triangle.c itself. Putting these definitions */
-/* in this file (triangle.h) will not create the desired effect. */
-/* */
-/* */
-/* The calling convention for triangulate() follows. */
-/* */
-/* void triangulate(triswitches, in, out, vorout) */
-/* char *triswitches; */
-/* struct triangulateio *in; */
-/* struct triangulateio *out; */
-/* struct triangulateio *vorout; */
-/* */
-/* `triswitches' is a string containing the command line switches you wish */
-/* to invoke. No initial dash is required. Some suggestions: */
-/* */
-/* - You'll probably find it convenient to use the `z' switch so that */
-/* points (and other items) are numbered from zero. This simplifies */
-/* indexing, because the first item of any type always starts at index */
-/* [0] of the corresponding array, whether that item's number is zero or */
-/* one. */
-/* - You'll probably want to use the `Q' (quiet) switch in your final code, */
-/* but you can take advantage of Triangle's printed output (including the */
-/* `V' switch) while debugging. */
-/* - If you are not using the `q', `a', `u', `D', `j', or `s' switches, */
-/* then the output points will be identical to the input points, except */
-/* possibly for the boundary markers. If you don't need the boundary */
-/* markers, you should use the `N' (no nodes output) switch to save */
-/* memory. (If you do need boundary markers, but need to save memory, a */
-/* good nasty trick is to set out->pointlist equal to in->pointlist */
-/* before calling triangulate(), so that Triangle overwrites the input */
-/* points with identical copies.) */
-/* - The `I' (no iteration numbers) and `g' (.off file output) switches */
-/* have no effect when Triangle is compiled with TRILIBRARY defined. */
-/* */
-/* `in', `out', and `vorout' are descriptions of the input, the output, */
-/* and the Voronoi output. If the `v' (Voronoi output) switch is not used, */
-/* `vorout' may be NULL. `in' and `out' may never be NULL. */
-/* */
-/* Certain fields of the input and output structures must be initialized, */
-/* as described below. */
-/* */
-/*****************************************************************************/
-
-/*****************************************************************************/
-/* */
-/* The `triangulateio' structure. */
-/* */
-/* Used to pass data into and out of the triangulate() procedure. */
-/* */
-/* */
-/* Arrays are used to store points, triangles, markers, and so forth. In */
-/* all cases, the first item in any array is stored starting at index [0]. */
-/* However, that item is item number `1' unless the `z' switch is used, in */
-/* which case it is item number `0'. Hence, you may find it easier to */
-/* index points (and triangles in the neighbor list) if you use the `z' */
-/* switch. Unless, of course, you're calling Triangle from a Fortran */
-/* program. */
-/* */
-/* Description of fields (except the `numberof' fields, which are obvious): */
-/* */
-/* `pointlist': An array of point coordinates. The first point's x */
-/* coordinate is at index [0] and its y coordinate at index [1], followed */
-/* by the coordinates of the remaining points. Each point occupies two */
-/* REALs. */
-/* `pointattributelist': An array of point attributes. Each point's */
-/* attributes occupy `numberofpointattributes' REALs. */
-/* `pointmarkerlist': An array of point markers; one int per point. */
-/* */
-/* `trianglelist': An array of triangle corners. The first triangle's */
-/* first corner is at index [0], followed by its other two corners in */
-/* counterclockwise order, followed by any other nodes if the triangle */
-/* represents a nonlinear element. Each triangle occupies */
-/* `numberofcorners' ints. */
-/* `triangleattributelist': An array of triangle attributes. Each */
-/* triangle's attributes occupy `numberoftriangleattributes' REALs. */
-/* `trianglearealist': An array of triangle area constraints; one REAL per */
-/* triangle. Input only. */
-/* `neighborlist': An array of triangle neighbors; three ints per */
-/* triangle. Output only. */
-/* */
-/* `segmentlist': An array of segment endpoints. The first segment's */
-/* endpoints are at indices [0] and [1], followed by the remaining */
-/* segments. Two ints per segment. */
-/* `segmentmarkerlist': An array of segment markers; one int per segment. */
-/* */
-/* `holelist': An array of holes. The first hole's x and y coordinates */
-/* are at indices [0] and [1], followed by the remaining holes. Two */
-/* REALs per hole. Input only, although the pointer is copied to the */
-/* output structure for your convenience. */
-/* */
-/* `regionlist': An array of regional attributes and area constraints. */
-/* The first constraint's x and y coordinates are at indices [0] and [1], */
-/* followed by the regional attribute at index [2], followed by the */
-/* maximum area at index [3], followed by the remaining area constraints. */
-/* Four REALs per area constraint. Note that each regional attribute is */
-/* used only if you select the `A' switch, and each area constraint is */
-/* used only if you select the `a' switch (with no number following), but */
-/* omitting one of these switches does not change the memory layout. */
-/* Input only, although the pointer is copied to the output structure for */
-/* your convenience. */
-/* */
-/* `edgelist': An array of edge endpoints. The first edge's endpoints are */
-/* at indices [0] and [1], followed by the remaining edges. Two ints per */
-/* edge. Output only. */
-/* `edgemarkerlist': An array of edge markers; one int per edge. Output */
-/* only. */
-/* `normlist': An array of normal vectors, used for infinite rays in */
-/* Voronoi diagrams. The first normal vector's x and y magnitudes are */
-/* at indices [0] and [1], followed by the remaining vectors. For each */
-/* finite edge in a Voronoi diagram, the normal vector written is the */
-/* zero vector. Two REALs per edge. Output only. */
-/* */
-/* */
-/* Any input fields that Triangle will examine must be initialized. */
-/* Furthermore, for each output array that Triangle will write to, you */
-/* must either provide space by setting the appropriate pointer to point */
-/* to the space you want the data written to, or you must initialize the */
-/* pointer to NULL, which tells Triangle to allocate space for the results. */
-/* The latter option is preferable, because Triangle always knows exactly */
-/* how much space to allocate. The former option is provided mainly for */
-/* people who need to call Triangle from Fortran code, though it also makes */
-/* possible some nasty space-saving tricks, like writing the output to the */
-/* same arrays as the input. */
-/* */
-/* Triangle will not free() any input or output arrays, including those it */
-/* allocates itself; that's up to you. You should free arrays allocated by */
-/* Triangle by calling the trifree() procedure defined below. (By default, */
-/* trifree() just calls the standard free() library procedure, but */
-/* applications that call triangulate() may replace trimalloc() and */
-/* trifree() in triangle.c to use specialized memory allocators.) */
-/* */
-/* Here's a guide to help you decide which fields you must initialize */
-/* before you call triangulate(). */
-/* */
-/* `in': */
-/* */
-/* - `pointlist' must always point to a list of points; `numberofpoints' */
-/* and `numberofpointattributes' must be properly set. */
-/* `pointmarkerlist' must either be set to NULL (in which case all */
-/* markers default to zero), or must point to a list of markers. If */
-/* `numberofpointattributes' is not zero, `pointattributelist' must */
-/* point to a list of point attributes. */
-/* - If the `r' switch is used, `trianglelist' must point to a list of */
-/* triangles, and `numberoftriangles', `numberofcorners', and */
-/* `numberoftriangleattributes' must be properly set. If */
-/* `numberoftriangleattributes' is not zero, `triangleattributelist' */
-/* must point to a list of triangle attributes. If the `a' switch is */
-/* used (with no number following), `trianglearealist' must point to a */
-/* list of triangle area constraints. `neighborlist' may be ignored. */
-/* - If the `p' switch is used, `segmentlist' must point to a list of */
-/* segments, `numberofsegments' must be properly set, and */
-/* `segmentmarkerlist' must either be set to NULL (in which case all */
-/* markers default to zero), or must point to a list of markers. */
-/* - If the `p' switch is used without the `r' switch, then */
-/* `numberofholes' and `numberofregions' must be properly set. If */
-/* `numberofholes' is not zero, `holelist' must point to a list of */
-/* holes. If `numberofregions' is not zero, `regionlist' must point to */
-/* a list of region constraints. */
-/* - If the `p' switch is used, `holelist', `numberofholes', */
-/* `regionlist', and `numberofregions' is copied to `out'. (You can */
-/* nonetheless get away with not initializing them if the `r' switch is */
-/* used.) */
-/* - `edgelist', `edgemarkerlist', `normlist', and `numberofedges' may be */
-/* ignored. */
-/* */
-/* `out': */
-/* */
-/* - `pointlist' must be initialized (NULL or pointing to memory) unless */
-/* the `N' switch is used. `pointmarkerlist' must be initialized */
-/* unless the `N' or `B' switch is used. If `N' is not used and */
-/* `in->numberofpointattributes' is not zero, `pointattributelist' must */
-/* be initialized. */
-/* - `trianglelist' must be initialized unless the `E' switch is used. */
-/* `neighborlist' must be initialized if the `n' switch is used. If */
-/* the `E' switch is not used and (`in->numberofelementattributes' is */
-/* not zero or the `A' switch is used), `elementattributelist' must be */
-/* initialized. `trianglearealist' may be ignored. */
-/* - `segmentlist' must be initialized if the `p' or `c' switch is used, */
-/* and the `P' switch is not used. `segmentmarkerlist' must also be */
-/* initialized under these circumstances unless the `B' switch is used. */
-/* - `edgelist' must be initialized if the `e' switch is used. */
-/* `edgemarkerlist' must be initialized if the `e' switch is used and */
-/* the `B' switch is not. */
-/* - `holelist', `regionlist', `normlist', and all scalars may be ignored.*/
-/* */
-/* `vorout' (only needed if `v' switch is used): */
-/* */
-/* - `pointlist' must be initialized. If `in->numberofpointattributes' */
-/* is not zero, `pointattributelist' must be initialized. */
-/* `pointmarkerlist' may be ignored. */
-/* - `edgelist' and `normlist' must both be initialized. */
-/* `edgemarkerlist' may be ignored. */
-/* - Everything else may be ignored. */
-/* */
-/* After a call to triangulate(), the valid fields of `out' and `vorout' */
-/* will depend, in an obvious way, on the choice of switches used. Note */
-/* that when the `p' switch is used, the pointers `holelist' and */
-/* `regionlist' are copied from `in' to `out', but no new space is */
-/* allocated; be careful that you don't free() the same array twice. On */
-/* the other hand, Triangle will never copy the `pointlist' pointer (or any */
-/* others); new space is allocated for `out->pointlist', or if the `N' */
-/* switch is used, `out->pointlist' remains uninitialized. */
-/* */
-/* All of the meaningful `numberof' fields will be properly set; for */
-/* instance, `numberofedges' will represent the number of edges in the */
-/* triangulation whether or not the edges were written. If segments are */
-/* not used, `numberofsegments' will indicate the number of boundary edges. */
-/* */
-/*****************************************************************************/
-
-//#define SINGLE
-
-#ifdef SINGLE
-#define REAL float
-#else /* not SINGLE */
-#define REAL double
-#endif /* not SINGLE */
-
-#define IO_REAL float
-
-#define INDICE unsigned short
-
-typedef struct triangulateio TriangleIO;
-
-struct triangulateio {
- IO_REAL *pointlist; /* In / out */
- IO_REAL *pointattributelist; /* In / out */
- int *pointmarkerlist; /* In / out */
- int numberofpoints; /* In / out */
- int numberofpointattributes; /* In / out */
-
- INDICE *trianglelist; /* In / out */
- REAL *triangleattributelist; /* In / out */
- REAL *trianglearealist; /* In only */
- int *neighborlist; /* Out only */
- int numberoftriangles; /* In / out */
- int numberofcorners; /* In / out */
- int numberoftriangleattributes; /* In / out */
-
- int *segmentlist; /* In / out */
- int *segmentmarkerlist; /* In / out */
- int numberofsegments; /* In / out */
-
- REAL *holelist; /* In / pointer to array copied out */
- int numberofholes; /* In / copied out */
-
- REAL *regionlist; /* In / pointer to array copied out */
- int numberofregions; /* In / copied out */
-
- int *edgelist; /* Out only */
- int *edgemarkerlist; /* Not used with Voronoi diagram; out only */
- REAL *normlist; /* Used only with Voronoi diagram; out only */
- int numberofedges; /* Out only */
-};
-
-/* Data structure for command line switches and file names. This structure
- * is used (instead of global variables) to allow reentrancy.
-
- * Switches for the triangulator.
- * poly: -p switch.
- * refine: -r switch.
- * quality: -q switch.
- * minangle: minimum angle bound, specified after -q switch.
- * goodangle: cosine squared of minangle.
- * offconstant: constant used to place off-center Steiner points.
- * vararea: -a switch without number.
- * fixedarea: -a switch with number.
- * maxarea: maximum area bound, specified after -a switch.
- * usertest: -u switch.
- * regionattrib: -A switch.
- * convex: -c switch.
- * weighted: 1 for -w switch, 2 for -W switch.
- * jettison: -j switch
- * firstnumber: inverse of -z switch. All items are numbered starting
- * from `firstnumber'.
- * edgesout: -e switch.
- * voronoi: -v switch.
- * neighbors: -n switch.
- * geomview: -g switch.
- * nobound: -B switch.
- * nopolywritten: -P switch.
- * nonodewritten: -N switch.
- * noelewritten: -E switch.
- * noiterationnum: -I switch.
- * noholes: -O switch.
- * noexact: -X switch.
- * order: element order, specified after -o switch.
- * nobisect: count of how often -Y switch is selected.
- * steiner: maximum number of Steiner points, specified after -S switch.
- * incremental: -i switch. sweepline: -F switch.
- * dwyer: inverse of -l switch.
- * splitseg: -s switch.
- * conformdel: -D switch. docheck: -C switch.
- * quiet: -Q switch. verbose: count of how often -V switch is selected.
- * usesegments: -p, -r, -q, or -c switch; determines whether segments are
- * used at all.
- *
- * Read the instructions to find out the meaning of these switches. */
-
-typedef struct behavior TriangleOptions;
-
-struct behavior {
- int poly, refine, quality, vararea, fixedarea, usertest;
- int regionattrib, convex, weighted, jettison;
- int firstnumber;
- int edgesout, voronoi, neighbors, geomview;
- int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
- int noholes, noexact, conformdel;
- int incremental, sweepline, dwyer;
- int splitseg;
- int docheck;
- int quiet, verbose;
- int usesegments;
- int order;
- int nobisect;
- int steiner;REAL minangle, goodangle, offconstant;REAL maxarea;
-
-};
-void parsecommandline(int argc, char **argv, struct behavior *b);
-void triangulate(struct behavior *, struct triangulateio *, struct triangulateio *,
- struct triangulateio *);
-
diff --git a/vtm/jni/triangle/triangle_dbg.c b/vtm/jni/triangle/triangle_dbg.c
deleted file mode 100644
index f6374ba3..00000000
--- a/vtm/jni/triangle/triangle_dbg.c
+++ /dev/null
@@ -1,441 +0,0 @@
-#include "triangle_private.h"
-
-/*****************************************************************************/
-/* */
-/* quality_statistics() Print statistics about the quality of the mesh. */
-/* */
-/*****************************************************************************/
-
-void quality_statistics(struct mesh *m, struct behavior *b) {
- struct otri triangleloop;
- vertex p[3];
- REAL cossquaretable[8];
- REAL ratiotable[16];
- REAL dx[3], dy[3];
- REAL edgelength[3];
- REAL dotproduct;
- REAL cossquare;
- REAL triarea;
- REAL shortest, longest;
- REAL trilongest2;
- REAL smallestarea, biggestarea;
- REAL triminaltitude2;
- REAL minaltitude;
- REAL triaspect2;
- REAL worstaspect;
- REAL smallestangle, biggestangle;
- REAL radconst, degconst;
- int angletable[18];
- int aspecttable[16];
- int aspectindex;
- int tendegree;
- int acutebiggest;
- int i, ii, j, k;
-
- printf("Mesh quality statistics:\n\n");
- radconst = PI / 18.0;
- degconst = 180.0 / PI;
- for (i = 0; i < 8; i++) {
- cossquaretable[i] = cos(radconst * (REAL) (i + 1));
- cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
- }
- for (i = 0; i < 18; i++) {
- angletable[i] = 0;
- }
-
- ratiotable[0] = 1.5;
- ratiotable[1] = 2.0;
- ratiotable[2] = 2.5;
- ratiotable[3] = 3.0;
- ratiotable[4] = 4.0;
- ratiotable[5] = 6.0;
- ratiotable[6] = 10.0;
- ratiotable[7] = 15.0;
- ratiotable[8] = 25.0;
- ratiotable[9] = 50.0;
- ratiotable[10] = 100.0;
- ratiotable[11] = 300.0;
- ratiotable[12] = 1000.0;
- ratiotable[13] = 10000.0;
- ratiotable[14] = 100000.0;
- ratiotable[15] = 0.0;
- for (i = 0; i < 16; i++) {
- aspecttable[i] = 0;
- }
-
- worstaspect = 0.0;
- minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
- minaltitude = minaltitude * minaltitude;
- shortest = minaltitude;
- longest = 0.0;
- smallestarea = minaltitude;
- biggestarea = 0.0;
- worstaspect = 0.0;
- smallestangle = 0.0;
- biggestangle = 2.0;
- acutebiggest = 1;
-
- traversalinit(&m->triangles);
- triangleloop.tri = triangletraverse(m);
- triangleloop.orient = 0;
- while (triangleloop.tri != (triangle *) NULL) {
- org(triangleloop, p[0]);
- dest(triangleloop, p[1]);
- apex(triangleloop, p[2]);
- trilongest2 = 0.0;
-
- for (i = 0; i < 3; i++) {
- j = plus1mod3[i];
- k = minus1mod3[i];
- dx[i] = p[j][0] - p[k][0];
- dy[i] = p[j][1] - p[k][1];
- edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
- if (edgelength[i] > trilongest2) {
- trilongest2 = edgelength[i];
- }
- if (edgelength[i] > longest) {
- longest = edgelength[i];
- }
- if (edgelength[i] < shortest) {
- shortest = edgelength[i];
- }
- }
-
- triarea = counterclockwise(m, b, p[0], p[1], p[2]);
- if (triarea < smallestarea) {
- smallestarea = triarea;
- }
- if (triarea > biggestarea) {
- biggestarea = triarea;
- }
- triminaltitude2 = triarea * triarea / trilongest2;
- if (triminaltitude2 < minaltitude) {
- minaltitude = triminaltitude2;
- }
- triaspect2 = trilongest2 / triminaltitude2;
- if (triaspect2 > worstaspect) {
- worstaspect = triaspect2;
- }
- aspectindex = 0;
- while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex]) && (aspectindex < 15)) {
- aspectindex++;
- }
- aspecttable[aspectindex]++;
-
- for (i = 0; i < 3; i++) {
- j = plus1mod3[i];
- k = minus1mod3[i];
- dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
- cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
- tendegree = 8;
- for (ii = 7; ii >= 0; ii--) {
- if (cossquare > cossquaretable[ii]) {
- tendegree = ii;
- }
- }
- if (dotproduct <= 0.0) {
- angletable[tendegree]++;
- if (cossquare > smallestangle) {
- smallestangle = cossquare;
- }
- if (acutebiggest && (cossquare < biggestangle)) {
- biggestangle = cossquare;
- }
- }
- else {
- angletable[17 - tendegree]++;
- if (acutebiggest || (cossquare > biggestangle)) {
- biggestangle = cossquare;
- acutebiggest = 0;
- }
- }
- }
- triangleloop.tri = triangletraverse(m);
- }
-
- shortest = sqrt(shortest);
- longest = sqrt(longest);
- minaltitude = sqrt(minaltitude);
- worstaspect = sqrt(worstaspect);
- smallestarea *= 0.5;
- biggestarea *= 0.5;
- if (smallestangle >= 1.0) {
- smallestangle = 0.0;
- }
- else {
- smallestangle = degconst * acos(sqrt(smallestangle));
- }
- if (biggestangle >= 1.0) {
- biggestangle = 180.0;
- }
- else {
- if (acutebiggest) {
- biggestangle = degconst * acos(sqrt(biggestangle));
- }
- else {
- biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
- }
- }
-
- printf(" Smallest area: %16.5g | Largest area: %16.5g\n", smallestarea, biggestarea);
- printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n", shortest, longest);
- printf(
- " Shortest altitude: %12.5g | Largest aspect ratio: %8.5g\n\n", minaltitude, worstaspect);
-
- printf(" Triangle aspect ratio histogram:\n");
- printf(
- " 1.1547 - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8], aspecttable[8]);
- for (i = 1; i < 7; i++) {
- printf(
- " %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", ratiotable[i - 1], ratiotable[i], aspecttable[i], ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
- }
- printf(
- " %6.6g - %-6.6g : %8d | %6.6g - : %8d\n", ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14], aspecttable[15]);
- printf(" (Aspect ratio is longest edge divided by shortest altitude)\n\n");
-
- printf(" Smallest angle: %15.5g | Largest angle: %15.5g\n\n", smallestangle, biggestangle);
-
- printf(" Angle histogram:\n");
- for (i = 0; i < 9; i++) {
- printf(
- " %3d - %3d degrees: %8d | %3d - %3d degrees: %8d\n", i * 10, i * 10 + 10, angletable[i], i * 10 + 90, i * 10 + 100, angletable[i + 9]);
- }
- printf("\n");
-}
-
-/*****************************************************************************/
-/* */
-/* statistics() Print all sorts of cool facts. */
-/* */
-/*****************************************************************************/
-
-void statistics(struct mesh *m, struct behavior *b) {
- printf("\nStatistics:\n\n");
- printf(" Input vertices: %d\n", m->invertices);
- if (b->refine) {
- printf(" Input triangles: %d\n", m->inelements);
- }
- if (b->poly) {
- printf(" Input segments: %d\n", m->insegments);
- if (!b->refine) {
- printf(" Input holes: %d\n", m->holes);
- }
- }
-
- printf("\n Mesh vertices: %ld\n", m->vertices.items - m->undeads);
- printf(" Mesh triangles: %ld\n", m->triangles.items);
- printf(" Mesh edges: %ld\n", m->edges);
- printf(" Mesh exterior boundary edges: %ld\n", m->hullsize);
- if (b->poly || b->refine) {
- printf(" Mesh interior boundary edges: %ld\n", m->subsegs.items - m->hullsize);
- printf(" Mesh subsegments (constrained edges): %ld\n", m->subsegs.items);
- }
- printf("\n");
-
- if (b->verbose) {
- quality_statistics(m, b);
- printf("Memory allocation statistics:\n\n");
- printf(" Maximum number of vertices: %ld\n", m->vertices.maxitems);
- printf(" Maximum number of triangles: %ld\n", m->triangles.maxitems);
- if (m->subsegs.maxitems > 0) {
- printf(" Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
- }
- if (m->viri.maxitems > 0) {
- printf(" Maximum number of viri: %ld\n", m->viri.maxitems);
- }
- if (m->badsubsegs.maxitems > 0) {
- printf(" Maximum number of encroached subsegments: %ld\n", m->badsubsegs.maxitems);
- }
- if (m->badtriangles.maxitems > 0) {
- printf(" Maximum number of bad triangles: %ld\n", m->badtriangles.maxitems);
- }
- if (m->flipstackers.maxitems > 0) {
- printf(" Maximum number of stacked triangle flips: %ld\n", m->flipstackers.maxitems);
- }
- if (m->splaynodes.maxitems > 0) {
- printf(" Maximum number of splay tree nodes: %ld\n", m->splaynodes.maxitems);
- }
- printf(
- " Approximate heap memory use (bytes): %ld\n\n", m->vertices.maxitems * m->vertices.itembytes + m->triangles.maxitems * m->triangles.itembytes + m->subsegs.maxitems * m->subsegs.itembytes + m->viri.maxitems * m->viri.itembytes + m->badsubsegs.maxitems * m->badsubsegs.itembytes + m->badtriangles.maxitems * m->badtriangles.itembytes + m->flipstackers.maxitems * m->flipstackers.itembytes + m->splaynodes.maxitems * m->splaynodes.itembytes);
-
- printf("Algorithmic statistics:\n\n");
- if (!b->weighted) {
- printf(" Number of incircle tests: %ld\n", m->incirclecount);
- }
- else {
- printf(" Number of 3D orientation tests: %ld\n", m->orient3dcount);
- }
- printf(" Number of 2D orientation tests: %ld\n", m->counterclockcount);
- if (m->hyperbolacount > 0) {
- printf(" Number of right-of-hyperbola tests: %ld\n", m->hyperbolacount);
- }
- if (m->circletopcount > 0) {
- printf(" Number of circle top computations: %ld\n", m->circletopcount);
- }
- if (m->circumcentercount > 0) {
- printf(" Number of triangle circumcenter computations: %ld\n", m->circumcentercount);
- }
- printf("\n");
- }
-}
-
-/********* Debugging routines begin here *********/
-/** **/
-/** **/
-
-/*****************************************************************************/
-/* */
-/* printtriangle() Print out the details of an oriented triangle. */
-/* */
-/* I originally wrote this procedure to simplify debugging; it can be */
-/* called directly from the debugger, and presents information about an */
-/* oriented triangle in digestible form. It's also used when the */
-/* highest level of verbosity (`-VVV') is specified. */
-/* */
-/*****************************************************************************/
-
-void printtriangle(struct mesh *m, struct behavior *b, struct otri *t) {
- struct otri printtri;
- struct osub printsh;
- vertex printvertex;
-
- printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri, t->orient);
- decode(t->tri[0], printtri);
- if (printtri.tri == m->dummytri) {
- printf(" [0] = Outer space\n");
- }
- else {
- printf(" [0] = x%lx %d\n", (unsigned long) printtri.tri, printtri.orient);
- }
- decode(t->tri[1], printtri);
- if (printtri.tri == m->dummytri) {
- printf(" [1] = Outer space\n");
- }
- else {
- printf(" [1] = x%lx %d\n", (unsigned long) printtri.tri, printtri.orient);
- }
- decode(t->tri[2], printtri);
- if (printtri.tri == m->dummytri) {
- printf(" [2] = Outer space\n");
- }
- else {
- printf(" [2] = x%lx %d\n", (unsigned long) printtri.tri, printtri.orient);
- }
-
- org(*t, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
- else
- printf(
- " Origin[%d] = x%lx (%.12g, %.12g)\n", (t->orient + 1) % 3 + 3, (unsigned long) printvertex, printvertex[0], printvertex[1]);
- dest(*t, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Dest [%d] = NULL\n", (t->orient + 2) % 3 + 3);
- else
- printf(
- " Dest [%d] = x%lx (%.12g, %.12g)\n", (t->orient + 2) % 3 + 3, (unsigned long) printvertex, printvertex[0], printvertex[1]);
- apex(*t, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Apex [%d] = NULL\n", t->orient + 3);
- else
- printf(
- " Apex [%d] = x%lx (%.12g, %.12g)\n", t->orient + 3, (unsigned long) printvertex, printvertex[0], printvertex[1]);
-
- if (b->usesegments) {
- sdecode(t->tri[6], printsh);
- if (printsh.ss != m->dummysub) {
- printf(" [6] = x%lx %d\n", (unsigned long) printsh.ss, printsh.ssorient);
- }
- sdecode(t->tri[7], printsh);
- if (printsh.ss != m->dummysub) {
- printf(" [7] = x%lx %d\n", (unsigned long) printsh.ss, printsh.ssorient);
- }
- sdecode(t->tri[8], printsh);
- if (printsh.ss != m->dummysub) {
- printf(" [8] = x%lx %d\n", (unsigned long) printsh.ss, printsh.ssorient);
- }
- }
-
- if (b->vararea) {
- printf(" Area constraint: %.4g\n", areabound(*t));
- }
-}
-
-/*****************************************************************************/
-/* */
-/* printsubseg() Print out the details of an oriented subsegment. */
-/* */
-/* I originally wrote this procedure to simplify debugging; it can be */
-/* called directly from the debugger, and presents information about an */
-/* oriented subsegment in digestible form. It's also used when the highest */
-/* level of verbosity (`-VVV') is specified. */
-/* */
-/*****************************************************************************/
-
-void printsubseg(struct mesh *m, struct behavior *b, struct osub *s) {
- struct osub printsh;
- struct otri printtri;
- vertex printvertex;
-
- printf(
- "subsegment x%lx with orientation %d and mark %d:\n", (unsigned long) s->ss, s->ssorient, mark(*s));
- sdecode(s->ss[0], printsh);
- if (printsh.ss == m->dummysub) {
- printf(" [0] = No subsegment\n");
- }
- else {
- printf(" [0] = x%lx %d\n", (unsigned long) printsh.ss, printsh.ssorient);
- }
- sdecode(s->ss[1], printsh);
- if (printsh.ss == m->dummysub) {
- printf(" [1] = No subsegment\n");
- }
- else {
- printf(" [1] = x%lx %d\n", (unsigned long) printsh.ss, printsh.ssorient);
- }
-
- sorg(*s, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Origin[%d] = NULL\n", 2 + s->ssorient);
- else
- printf(
- " Origin[%d] = x%lx (%.12g, %.12g)\n", 2 + s->ssorient, (unsigned long) printvertex, printvertex[0], printvertex[1]);
- sdest(*s, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Dest [%d] = NULL\n", 3 - s->ssorient);
- else
- printf(
- " Dest [%d] = x%lx (%.12g, %.12g)\n", 3 - s->ssorient, (unsigned long) printvertex, printvertex[0], printvertex[1]);
-
- decode(s->ss[6], printtri);
- if (printtri.tri == m->dummytri) {
- printf(" [6] = Outer space\n");
- }
- else {
- printf(" [6] = x%lx %d\n", (unsigned long) printtri.tri, printtri.orient);
- }
- decode(s->ss[7], printtri);
- if (printtri.tri == m->dummytri) {
- printf(" [7] = Outer space\n");
- }
- else {
- printf(" [7] = x%lx %d\n", (unsigned long) printtri.tri, printtri.orient);
- }
-
- segorg(*s, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Segment origin[%d] = NULL\n", 4 + s->ssorient);
- else
- printf(
- " Segment origin[%d] = x%lx (%.12g, %.12g)\n", 4 + s->ssorient, (unsigned long) printvertex, printvertex[0], printvertex[1]);
- segdest(*s, printvertex);
- if (printvertex == (vertex) NULL)
- printf(" Segment dest [%d] = NULL\n", 5 - s->ssorient);
- else
- printf(
- " Segment dest [%d] = x%lx (%.12g, %.12g)\n", 5 - s->ssorient, (unsigned long) printvertex, printvertex[0], printvertex[1]);
-}
-
-/** **/
-/** **/
-/********* Debugging routines end here *********/
diff --git a/vtm/jni/triangle/triangle_private.h b/vtm/jni/triangle/triangle_private.h
deleted file mode 100644
index 22d1667e..00000000
--- a/vtm/jni/triangle/triangle_private.h
+++ /dev/null
@@ -1,1070 +0,0 @@
-/* For single precision (which will save some memory and reduce paging), */
-/* define the symbol SINGLE by using the -DSINGLE compiler switch or by */
-/* writing "#define SINGLE" below. */
-/* */
-/* For double precision (which will allow you to refine meshes to a smaller */
-/* edge length), leave SINGLE undefined. */
-/* */
-/* Double precision uses more memory, but improves the resolution of the */
-/* meshes you can generate with Triangle. It also reduces the likelihood */
-/* of a floating exception due to overflow. Finally, it is much faster */
-/* than single precision on 64-bit architectures like the DEC Alpha. I */
-/* recommend double precision unless you want to generate a mesh for which */
-/* you do not have enough memory. */
-
-/* #define SINGLE */
-
-/* #ifdef SINGLE */
-/* #define REAL float */
-/* #else /\* not SINGLE *\/ */
-/* #define REAL double */
-/* #endif /\* not SINGLE *\/ */
-
-/* If yours is not a Unix system, define the NO_TIMER compiler switch to */
-/* remove the Unix-specific timing code. */
-
-/* #define NO_TIMER */
-
-/* To insert lots of self-checks for internal errors, define the SELF_CHECK */
-/* symbol. This will slow down the program significantly. It is best to */
-/* define the symbol using the -DSELF_CHECK compiler switch, but you could */
-/* write "#define SELF_CHECK" below. If you are modifying this code, I */
-/* recommend you turn self-checks on until your work is debugged. */
-
-/* #define SELF_CHECK */
-
-/* To compile Triangle as a callable object library (triangle.o), define the */
-/* TRILIBRARY symbol. Read the file triangle.h for details on how to call */
-/* the procedure triangulate() that results. */
-
-/* #define TRILIBRARY */
-
-/* It is possible to generate a smaller version of Triangle using one or */
-/* both of the following symbols. Define the REDUCED symbol to eliminate */
-/* all features that are primarily of research interest; specifically, the */
-/* -i, -F, -s, and -C switches. Define the CDT_ONLY symbol to eliminate */
-/* all meshing algorithms above and beyond constrained Delaunay */
-/* triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s */
-/* switches. These reductions are most likely to be useful when */
-/* generating an object library (triangle.o) by defining the TRILIBRARY */
-/* symbol. */
-
-/* #define REDUCED */
-/* #define CDT_ONLY */
-
-/* On some machines, my exact arithmetic routines might be defeated by the */
-/* use of internal extended precision floating-point registers. The best */
-/* way to solve this problem is to set the floating-point registers to use */
-/* single or double precision internally. On 80x86 processors, this may */
-/* be accomplished by setting the CPU86 symbol for the Microsoft C */
-/* compiler, or the LINUX symbol for the gcc compiler running on Linux. */
-/* */
-/* An inferior solution is to declare certain values as `volatile', thus */
-/* forcing them to be stored to memory and rounded off. Unfortunately, */
-/* this solution might slow Triangle down quite a bit. To use volatile */
-/* values, write "#define volatile" below. Normally, however, */
-/* should be defined to be nothing. ("#define ".) */
-/* */
-/* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html . */
-/* For yet more discussion, see Section 5 of my paper, "Adaptive Precision */
-/* Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also */
-/* available as Section 6.6 of my dissertation). */
-
-/* #define CPU86 */
-/* #define LINUX */
-
-//#define /* Nothing */
-/* #define volatile */
-
-/* Maximum number of characters in a file name (including the null). */
-
-#define FILENAMESIZE 2048
-
-/* Maximum number of characters in a line read from a file (including the */
-/* null). */
-
-#define INPUTLINESIZE 1024
-
-/* For efficiency, a variety of data structures are allocated in bulk. The */
-/* following constants determine how many of each structure is allocated */
-/* at once. */
-
-#define TRIPERBLOCK 4092 /* Number of triangles allocated at once. */
-#define SUBSEGPERBLOCK 508 /* Number of subsegments allocated at once. */
-#define VERTEXPERBLOCK 4092 /* Number of vertices allocated at once. */
-#define VIRUSPERBLOCK 1020 /* Number of virus triangles allocated at once. */
-/* Number of encroached subsegments allocated at once. */
-#define BADSUBSEGPERBLOCK 252
-/* Number of skinny triangles allocated at once. */
-#define BADTRIPERBLOCK 4092
-/* Number of flipped triangles allocated at once. */
-#define FLIPSTACKERPERBLOCK 252
-/* Number of splay tree nodes allocated at once. */
-#define SPLAYNODEPERBLOCK 508
-
-/* The vertex types. A DEADVERTEX has been deleted entirely. An */
-/* UNDEADVERTEX is not part of the mesh, but is written to the output */
-/* .node file and affects the node indexing in the other output files. */
-
-#define INPUTVERTEX 0
-#define SEGMENTVERTEX 1
-#define FREEVERTEX 2
-#define DEADVERTEX -32768
-#define UNDEADVERTEX -32767
-
-/* The next line is used to outsmart some very stupid compilers. If your */
-/* compiler is smarter, feel free to replace the "int" with "void". */
-/* Not that it matters. */
-
-//#define VOID int
-#define VOID void
-
-/* Two constants for algorithms based on random sampling. Both constants */
-/* have been chosen empirically to optimize their respective algorithms. */
-
-/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide */
-/* how large a random sample of triangles to inspect. */
-
-#define SAMPLEFACTOR 11
-
-/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
-/* of boundary edges should be maintained in the splay tree for point */
-/* location on the front. */
-
-/* A number that speaks for itself, every kissable digit. */
-
-#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
-
-/* Another fave. */
-
-#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
-
-/* And here's one for those of you who are intimidated by math. */
-
-#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
-
-#include
-#include
-#include
-#include
-#ifndef NO_TIMER
-#include
-#endif /* not NO_TIMER */
-#ifdef CPU86
-#include
-#endif /* CPU86 */
-#ifdef LINUX
-#include
-#endif /* LINUX */
-#include "triangle.h"
-
-#ifdef __ANDROID__
-#include
-#define printf(...) __android_log_print(ANDROID_LOG_DEBUG, "Triangle", __VA_ARGS__)
-#endif
-
-
-/* A few forward declarations. */
-
-/* Labels that signify the result of point location. The result of a */
-/* search indicates that the point falls in the interior of a triangle, on */
-/* an edge, on a vertex, or outside the mesh. */
-
-enum locateresult {
- INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE
-};
-
-/* Labels that signify the result of vertex insertion. The result indicates */
-/* that the vertex was inserted with complete success, was inserted but */
-/* encroaches upon a subsegment, was not inserted because it lies on a */
-/* segment, or was not inserted because another vertex occupies the same */
-/* location. */
-
-enum insertvertexresult {
- SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX, DUPLICATEVERTEX
-};
-
-/* Labels that signify the result of direction finding. The result */
-/* indicates that a segment connecting the two query points falls within */
-/* the direction triangle, along the left edge of the direction triangle, */
-/* or along the right edge of the direction triangle. */
-
-enum finddirectionresult {
- WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR
-};
-/*****************************************************************************/
-/* */
-/* The basic mesh data structures */
-/* */
-/* There are three: vertices, triangles, and subsegments (abbreviated */
-/* `subseg'). These three data structures, linked by pointers, comprise */
-/* the mesh. A vertex simply represents a mesh vertex and its properties. */
-/* A triangle is a triangle. A subsegment is a special data structure used */
-/* to represent an impenetrable edge of the mesh (perhaps on the outer */
-/* boundary, on the boundary of a hole, or part of an internal boundary */
-/* separating two triangulated regions). Subsegments represent boundaries, */
-/* defined by the user, that triangles may not lie across. */
-/* */
-/* A triangle consists of a list of three vertices, a list of three */
-/* adjoining triangles, a list of three adjoining subsegments (when */
-/* segments exist), an arbitrary number of optional user-defined */
-/* floating-point attributes, and an optional area constraint. The latter */
-/* is an upper bound on the permissible area of each triangle in a region, */
-/* used for mesh refinement. */
-/* */
-/* For a triangle on a boundary of the mesh, some or all of the neighboring */
-/* triangles may not be present. For a triangle in the interior of the */
-/* mesh, often no neighboring subsegments are present. Such absent */
-/* triangles and subsegments are never represented by NULL pointers; they */
-/* are represented by two special records: `dummytri', the triangle that */
-/* fills "outer space", and `dummysub', the omnipresent subsegment. */
-/* `dummytri' and `dummysub' are used for several reasons; for instance, */
-/* they can be dereferenced and their contents examined without violating */
-/* protected memory. */
-/* */
-/* However, it is important to understand that a triangle includes other */
-/* information as well. The pointers to adjoining vertices, triangles, and */
-/* subsegments are ordered in a way that indicates their geometric relation */
-/* to each other. Furthermore, each of these pointers contains orientation */
-/* information. Each pointer to an adjoining triangle indicates which face */
-/* of that triangle is contacted. Similarly, each pointer to an adjoining */
-/* subsegment indicates which side of that subsegment is contacted, and how */
-/* the subsegment is oriented relative to the triangle. */
-/* */
-/* The data structure representing a subsegment may be thought to be */
-/* abutting the edge of one or two triangle data structures: either */
-/* sandwiched between two triangles, or resting against one triangle on an */
-/* exterior boundary or hole boundary. */
-/* */
-/* A subsegment consists of a list of four vertices--the vertices of the */
-/* subsegment, and the vertices of the segment it is a part of--a list of */
-/* two adjoining subsegments, and a list of two adjoining triangles. One */
-/* of the two adjoining triangles may not be present (though there should */
-/* always be one), and neighboring subsegments might not be present. */
-/* Subsegments also store a user-defined integer "boundary marker". */
-/* Typically, this integer is used to indicate what boundary conditions are */
-/* to be applied at that location in a finite element simulation. */
-/* */
-/* Like triangles, subsegments maintain information about the relative */
-/* orientation of neighboring objects. */
-/* */
-/* Vertices are relatively simple. A vertex is a list of floating-point */
-/* numbers, starting with the x, and y coordinates, followed by an */
-/* arbitrary number of optional user-defined floating-point attributes, */
-/* followed by an integer boundary marker. During the segment insertion */
-/* phase, there is also a pointer from each vertex to a triangle that may */
-/* contain it. Each pointer is not always correct, but when one is, it */
-/* speeds up segment insertion. These pointers are assigned values once */
-/* at the beginning of the segment insertion phase, and are not used or */
-/* updated except during this phase. Edge flipping during segment */
-/* insertion will render some of them incorrect. Hence, don't rely upon */
-/* them for anything. */
-/* */
-/* Other than the exception mentioned above, vertices have no information */
-/* about what triangles, subfacets, or subsegments they are linked to. */
-/* */
-/*****************************************************************************/
-
-/*****************************************************************************/
-/* */
-/* Handles */
-/* */
-/* The oriented triangle (`otri') and oriented subsegment (`osub') data */
-/* structures defined below do not themselves store any part of the mesh. */
-/* The mesh itself is made of `triangle's, `subseg's, and `vertex's. */
-/* */
-/* Oriented triangles and oriented subsegments will usually be referred to */
-/* as "handles." A handle is essentially a pointer into the mesh; it */
-/* allows you to "hold" one particular part of the mesh. Handles are used */
-/* to specify the regions in which one is traversing and modifying the mesh.*/
-/* A single `triangle' may be held by many handles, or none at all. (The */
-/* latter case is not a memory leak, because the triangle is still */
-/* connected to other triangles in the mesh.) */
-/* */
-/* An `otri' is a handle that holds a triangle. It holds a specific edge */
-/* of the triangle. An `osub' is a handle that holds a subsegment. It */
-/* holds either the left or right side of the subsegment. */
-/* */
-/* Navigation about the mesh is accomplished through a set of mesh */
-/* manipulation primitives, further below. Many of these primitives take */
-/* a handle and produce a new handle that holds the mesh near the first */
-/* handle. Other primitives take two handles and glue the corresponding */
-/* parts of the mesh together. The orientation of the handles is */
-/* important. For instance, when two triangles are glued together by the */
-/* bond() primitive, they are glued at the edges on which the handles lie. */
-/* */
-/* Because vertices have no information about which triangles they are */
-/* attached to, I commonly represent a vertex by use of a handle whose */
-/* origin is the vertex. A single handle can simultaneously represent a */
-/* triangle, an edge, and a vertex. */
-/* */
-/*****************************************************************************/
-
-/* The triangle data structure. Each triangle contains three pointers to */
-/* adjoining triangles, plus three pointers to vertices, plus three */
-/* pointers to subsegments (declared below; these pointers are usually */
-/* `dummysub'). It may or may not also contain user-defined attributes */
-/* and/or a floating-point "area constraint." It may also contain extra */
-/* pointers for nodes, when the user asks for high-order elements. */
-/* Because the size and structure of a `triangle' is not decided until */
-/* runtime, I haven't simply declared the type `triangle' as a struct. */
-
-typedef REAL **triangle; /* Really: typedef triangle *triangle */
-
-/* An oriented triangle: includes a pointer to a triangle and orientation. */
-/* The orientation denotes an edge of the triangle. Hence, there are */
-/* three possible orientations. By convention, each edge always points */
-/* counterclockwise about the corresponding triangle. */
-
-struct otri {
- triangle *tri;
- int orient; /* Ranges from 0 to 2. */
-};
-
-/* The subsegment data structure. Each subsegment contains two pointers to */
-/* adjoining subsegments, plus four pointers to vertices, plus two */
-/* pointers to adjoining triangles, plus one boundary marker, plus one */
-/* segment number. */
-
-typedef REAL **subseg; /* Really: typedef subseg *subseg */
-
-/* An oriented subsegment: includes a pointer to a subsegment and an */
-/* orientation. The orientation denotes a side of the edge. Hence, there */
-/* are two possible orientations. By convention, the edge is always */
-/* directed so that the "side" denoted is the right side of the edge. */
-
-struct osub {
- subseg *ss;
- int ssorient; /* Ranges from 0 to 1. */
-};
-
-/* The vertex data structure. Each vertex is actually an array of REALs. */
-/* The number of REALs is unknown until runtime. An integer boundary */
-/* marker, and sometimes a pointer to a triangle, is appended after the */
-/* REALs. */
-
-typedef REAL *vertex;
-
-/* A queue used to store encroached subsegments. Each subsegment's vertices */
-/* are stored so that we can check whether a subsegment is still the same. */
-
-struct badsubseg {
- subseg encsubseg; /* An encroached subsegment. */
- vertex subsegorg, subsegdest; /* Its two vertices. */
-};
-
-/* A queue used to store bad triangles. The key is the square of the cosine */
-/* of the smallest angle of the triangle. Each triangle's vertices are */
-/* stored so that one can check whether a triangle is still the same. */
-
-struct badtriang {
- triangle poortri; /* A skinny or too-large triangle. */
- REAL key; /* cos^2 of smallest (apical) angle. */
- vertex triangorg, triangdest, triangapex; /* Its three vertices. */
- struct badtriang *nexttriang; /* Pointer to next bad triangle. */
-};
-
-/* A stack of triangles flipped during the most recent vertex insertion. */
-/* The stack is used to undo the vertex insertion if the vertex encroaches */
-/* upon a subsegment. */
-
-struct flipstacker {
- triangle flippedtri; /* A recently flipped triangle. */
- struct flipstacker *prevflip; /* Previous flip in the stack. */
-};
-
-/* A node in a heap used to store events for the sweepline Delaunay */
-/* algorithm. Nodes do not point directly to their parents or children in */
-/* the heap. Instead, each node knows its position in the heap, and can */
-/* look up its parent and children in a separate array. The `eventptr' */
-/* points either to a `vertex' or to a triangle (in encoded format, so */
-/* that an orientation is included). In the latter case, the origin of */
-/* the oriented triangle is the apex of a "circle event" of the sweepline */
-/* algorithm. To distinguish site events from circle events, all circle */
-/* events are given an invalid (smaller than `xmin') x-coordinate `xkey'. */
-
-struct event {
- REAL xkey, ykey; /* Coordinates of the event. */
- VOID *eventptr; /* Can be a vertex or the location of a circle event. */
- int heapposition; /* Marks this event's position in the heap. */
-};
-
-/* A node in the splay tree. Each node holds an oriented ghost triangle */
-/* that represents a boundary edge of the growing triangulation. When a */
-/* circle event covers two boundary edges with a triangle, so that they */
-/* are no longer boundary edges, those edges are not immediately deleted */
-/* from the tree; rather, they are lazily deleted when they are next */
-/* encountered. (Since only a random sample of boundary edges are kept */
-/* in the tree, lazy deletion is faster.) `keydest' is used to verify */
-/* that a triangle is still the same as when it entered the splay tree; if */
-/* it has been rotated (due to a circle event), it no longer represents a */
-/* boundary edge and should be deleted. */
-
-struct splaynode {
- struct otri keyedge; /* Lprev of an edge on the front. */
- vertex keydest; /* Used to verify that splay node is still live. */
- struct splaynode *lchild, *rchild; /* Children in splay tree. */
-};
-
-/* A type used to allocate memory. firstblock is the first block of items. */
-/* nowblock is the block from which items are currently being allocated. */
-/* nextitem points to the next slab of free memory for an item. */
-/* deaditemstack is the head of a linked list (stack) of deallocated items */
-/* that can be recycled. unallocateditems is the number of items that */
-/* remain to be allocated from nowblock. */
-/* */
-/* Traversal is the process of walking through the entire list of items, and */
-/* is separate from allocation. Note that a traversal will visit items on */
-/* the "deaditemstack" stack as well as live items. pathblock points to */
-/* the block currently being traversed. pathitem points to the next item */
-/* to be traversed. pathitemsleft is the number of items that remain to */
-/* be traversed in pathblock. */
-/* */
-/* alignbytes determines how new records should be aligned in memory. */
-/* itembytes is the length of a record in bytes (after rounding up). */
-/* itemsperblock is the number of items allocated at once in a single */
-/* block. itemsfirstblock is the number of items in the first block, */
-/* which can vary from the others. items is the number of currently */
-/* allocated items. maxitems is the maximum number of items that have */
-/* been allocated at once; it is the current number of items plus the */
-/* number of records kept on deaditemstack. */
-
-struct memorypool {
- VOID **firstblock, **nowblock;
- VOID *nextitem;
- VOID *deaditemstack;
- VOID **pathblock;
- VOID *pathitem;
- int alignbytes;
- int itembytes;
- int itemsperblock;
- int itemsfirstblock;
- long items, maxitems;
- int unallocateditems;
- int pathitemsleft;
-};
-
-/* Global constants. */
-
-REAL splitter; /* Used to split REAL factors for exact multiplication. */
-REAL epsilon; /* Floating-point machine epsilon. */
-REAL resulterrbound;
-REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
-REAL iccerrboundA, iccerrboundB, iccerrboundC;
-REAL o3derrboundA, o3derrboundB, o3derrboundC;
-
-/* Random number seed is not constant, but I've made it global anyway. */
-
-unsigned long randomseed; /* Current random number seed. */
-
-/* Mesh data structure. Triangle operates on only one mesh, but the mesh */
-/* structure is used (instead of global variables) to allow reentrancy. */
-
-struct mesh {
-
- /* Variables used to allocate memory for triangles, subsegments, vertices, */
- /* viri (triangles being eaten), encroached segments, bad (skinny or too */
- /* large) triangles, and splay tree nodes. */
-
- struct memorypool triangles;
- struct memorypool subsegs;
- struct memorypool vertices;
- struct memorypool viri;
- struct memorypool badsubsegs;
- struct memorypool badtriangles;
- struct memorypool flipstackers;
- struct memorypool splaynodes;
-
- /* Variables that maintain the bad triangle queues. The queues are */
- /* ordered from 4095 (highest priority) to 0 (lowest priority). */
-
- struct badtriang *queuefront[4096];
- struct badtriang *queuetail[4096];
- int nextnonemptyq[4096];
- int firstnonemptyq;
-
- /* Variable that maintains the stack of recently flipped triangles. */
-
- struct flipstacker *lastflip;
-
- /* Other variables. */
-
- REAL xmin, xmax, ymin, ymax; /* x and y bounds. */
- REAL xminextreme; /* Nonexistent x value used as a flag in sweepline. */
- int invertices; /* Number of input vertices. */
- int inelements; /* Number of input triangles. */
- int insegments; /* Number of input segments. */
- int holes; /* Number of input holes. */
- int regions; /* Number of input regions. */
- int undeads; /* Number of input vertices that don't appear in the mesh. */
- long edges; /* Number of output edges. */
- int mesh_dim; /* Dimension (ought to be 2). */
- int nextras; /* Number of attributes per vertex. */
- int eextras; /* Number of attributes per triangle. */
- long hullsize; /* Number of edges in convex hull. */
- int steinerleft; /* Number of Steiner points not yet used. */
- int vertexmarkindex; /* Index to find boundary marker of a vertex. */
- int vertex2triindex; /* Index to find a triangle adjacent to a vertex. */
- int highorderindex; /* Index to find extra nodes for high-order elements. */
- int elemattribindex; /* Index to find attributes of a triangle. */
- int areaboundindex; /* Index to find area bound of a triangle. */
- int checksegments; /* Are there segments in the triangulation yet? */
- int checkquality; /* Has quality triangulation begun yet? */
- int readnodefile; /* Has a .node file been read? */
- long samples; /* Number of random samples for point location. */
-
- long incirclecount; /* Number of incircle tests performed. */
- long counterclockcount; /* Number of counterclockwise tests performed. */
- long orient3dcount; /* Number of 3D orientation tests performed. */
- long hyperbolacount; /* Number of right-of-hyperbola tests performed. */
- long circumcentercount; /* Number of circumcenter calculations performed. */
- long circletopcount; /* Number of circle top calculations performed. */
-
- /* Triangular bounding box vertices. */
-
- vertex infvertex1, infvertex2, infvertex3;
-
- /* Pointer to the `triangle' that occupies all of "outer space." */
-
- triangle *dummytri;
- triangle *dummytribase; /* Keep base address so we can free() it later. */
-
- /* Pointer to the omnipresent subsegment. Referenced by any triangle or */
- /* subsegment that isn't really connected to a subsegment at that */
- /* location. */
-
- subseg *dummysub;
- subseg *dummysubbase; /* Keep base address so we can free() it later. */
-
- /* Pointer to a recently visited triangle. Improves point location if */
- /* proximate vertices are inserted sequentially. */
-
- struct otri recenttri;
-
-};
-/* End of `struct mesh'. */
-
-
-
-/*****************************************************************************/
-/* */
-/* Mesh manipulation primitives. Each triangle contains three pointers to */
-/* other triangles, with orientations. Each pointer points not to the */
-/* first byte of a triangle, but to one of the first three bytes of a */
-/* triangle. It is necessary to extract both the triangle itself and the */
-/* orientation. To save memory, I keep both pieces of information in one */
-/* pointer. To make this possible, I assume that all triangles are aligned */
-/* to four-byte boundaries. The decode() routine below decodes a pointer, */
-/* extracting an orientation (in the range 0 to 2) and a pointer to the */
-/* beginning of a triangle. The encode() routine compresses a pointer to a */
-/* triangle and an orientation into a single pointer. My assumptions that */
-/* triangles are four-byte-aligned and that the `unsigned long' type is */
-/* long enough to hold a pointer are two of the few kludges in this program.*/
-/* */
-/* Subsegments are manipulated similarly. A pointer to a subsegment */
-/* carries both an address and an orientation in the range 0 to 1. */
-/* */
-/* The other primitives take an oriented triangle or oriented subsegment, */
-/* and return an oriented triangle or oriented subsegment or vertex; or */
-/* they change the connections in the data structure. */
-/* */
-/* Below, triangles and subsegments are denoted by their vertices. The */
-/* triangle abc has origin (org) a, destination (dest) b, and apex (apex) */
-/* c. These vertices occur in counterclockwise order about the triangle. */
-/* The handle abc may simultaneously denote vertex a, edge ab, and triangle */
-/* abc. */
-/* */
-/* Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
-/* b. If ab is thought to be directed upward (with b directly above a), */
-/* then the handle ab is thought to grasp the right side of ab, and may */
-/* simultaneously denote vertex a and edge ab. */
-/* */
-/* An asterisk (*) denotes a vertex whose identity is unknown. */
-/* */
-/* Given this notation, a partial list of mesh manipulation primitives */
-/* follows. */
-/* */
-/* */
-/* For triangles: */
-/* */
-/* sym: Find the abutting triangle; same edge. */
-/* sym(abc) -> ba* */
-/* */
-/* lnext: Find the next edge (counterclockwise) of a triangle. */
-/* lnext(abc) -> bca */
-/* */
-/* lprev: Find the previous edge (clockwise) of a triangle. */
-/* lprev(abc) -> cab */
-/* */
-/* onext: Find the next edge counterclockwise with the same origin. */
-/* onext(abc) -> ac* */
-/* */
-/* oprev: Find the next edge clockwise with the same origin. */
-/* oprev(abc) -> a*b */
-/* */
-/* dnext: Find the next edge counterclockwise with the same destination. */
-/* dnext(abc) -> *ba */
-/* */
-/* dprev: Find the next edge clockwise with the same destination. */
-/* dprev(abc) -> cb* */
-/* */
-/* rnext: Find the next edge (counterclockwise) of the adjacent triangle. */
-/* rnext(abc) -> *a* */
-/* */
-/* rprev: Find the previous edge (clockwise) of the adjacent triangle. */
-/* rprev(abc) -> b** */
-/* */
-/* org: Origin dest: Destination apex: Apex */
-/* org(abc) -> a dest(abc) -> b apex(abc) -> c */
-/* */
-/* bond: Bond two triangles together at the resepective handles. */
-/* bond(abc, bad) */
-/* */
-/* */
-/* For subsegments: */
-/* */
-/* ssym: Reverse the orientation of a subsegment. */
-/* ssym(ab) -> ba */
-/* */
-/* spivot: Find adjoining subsegment with the same origin. */
-/* spivot(ab) -> a* */
-/* */
-/* snext: Find next subsegment in sequence. */
-/* snext(ab) -> b* */
-/* */
-/* sorg: Origin sdest: Destination */
-/* sorg(ab) -> a sdest(ab) -> b */
-/* */
-/* sbond: Bond two subsegments together at the respective origins. */
-/* sbond(ab, ac) */
-/* */
-/* */
-/* For interacting tetrahedra and subfacets: */
-/* */
-/* tspivot: Find a subsegment abutting a triangle. */
-/* tspivot(abc) -> ba */
-/* */
-/* stpivot: Find a triangle abutting a subsegment. */
-/* stpivot(ab) -> ba* */
-/* */
-/* tsbond: Bond a triangle to a subsegment. */
-/* tsbond(abc, ba) */
-/* */
-/*****************************************************************************/
-
-/********* Mesh manipulation primitives begin here *********/
-/** **/
-/** **/
-
-/* Fast lookup arrays to speed some of the mesh manipulation primitives. */
-
-extern int plus1mod3[]; // = { 1, 2, 0 };
-extern int minus1mod3[]; // = { 2, 0, 1 };
-
-/********* Primitives for triangles *********/
-/* */
-/* */
-
-/* decode() converts a pointer to an oriented triangle. The orientation is */
-/* extracted from the two least significant bits of the pointer. */
-
-#define decode(ptr, otri) \
- (otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l); \
- (otri).tri = (triangle *) \
- ((unsigned long) (ptr) ^ (unsigned long) (otri).orient)
-
-/* encode() compresses an oriented triangle into a single pointer. It */
-/* relies on the assumption that all triangles are aligned to four-byte */
-/* boundaries, so the two least significant bits of (otri).tri are zero. */
-
-#define encode(otri) \
- (triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient)
-
-/* The following handle manipulation primitives are all described by Guibas */
-/* and Stolfi. However, Guibas and Stolfi use an edge-based data */
-/* structure, whereas I use a triangle-based data structure. */
-
-/* sym() finds the abutting triangle, on the same edge. Note that the edge */
-/* direction is necessarily reversed, because the handle specified by an */
-/* oriented triangle is directed counterclockwise around the triangle. */
-
-#define sym(otri1, otri2) \
- ptr = (otri1).tri[(otri1).orient]; \
- decode(ptr, otri2);
-
-#define symself(otri) \
- ptr = (otri).tri[(otri).orient]; \
- decode(ptr, otri);
-
-/* lnext() finds the next edge (counterclockwise) of a triangle. */
-
-#define lnext(otri1, otri2) \
- (otri2).tri = (otri1).tri; \
- (otri2).orient = plus1mod3[(otri1).orient]
-
-#define lnextself(otri) \
- (otri).orient = plus1mod3[(otri).orient]
-
-/* lprev() finds the previous edge (clockwise) of a triangle. */
-
-#define lprev(otri1, otri2) \
- (otri2).tri = (otri1).tri; \
- (otri2).orient = minus1mod3[(otri1).orient]
-
-#define lprevself(otri) \
- (otri).orient = minus1mod3[(otri).orient]
-
-/* onext() spins counterclockwise around a vertex; that is, it finds the */
-/* next edge with the same origin in the counterclockwise direction. This */
-/* edge is part of a different triangle. */
-
-#define onext(otri1, otri2) \
- lprev(otri1, otri2); \
- symself(otri2);
-
-#define onextself(otri) \
- lprevself(otri); \
- symself(otri);
-
-/* oprev() spins clockwise around a vertex; that is, it finds the next edge */
-/* with the same origin in the clockwise direction. This edge is part of */
-/* a different triangle. */
-
-#define oprev(otri1, otri2) \
- sym(otri1, otri2); \
- lnextself(otri2);
-
-#define oprevself(otri) \
- symself(otri); \
- lnextself(otri);
-
-/* dnext() spins counterclockwise around a vertex; that is, it finds the */
-/* next edge with the same destination in the counterclockwise direction. */
-/* This edge is part of a different triangle. */
-
-#define dnext(otri1, otri2) \
- sym(otri1, otri2); \
- lprevself(otri2);
-
-#define dnextself(otri) \
- symself(otri); \
- lprevself(otri);
-
-/* dprev() spins clockwise around a vertex; that is, it finds the next edge */
-/* with the same destination in the clockwise direction. This edge is */
-/* part of a different triangle. */
-
-#define dprev(otri1, otri2) \
- lnext(otri1, otri2); \
- symself(otri2);
-
-#define dprevself(otri) \
- lnextself(otri); \
- symself(otri);
-
-/* rnext() moves one edge counterclockwise about the adjacent triangle. */
-/* (It's best understood by reading Guibas and Stolfi. It involves */
-/* changing triangles twice.) */
-
-#define rnext(otri1, otri2) \
- sym(otri1, otri2); \
- lnextself(otri2); \
- symself(otri2);
-
-#define rnextself(otri) \
- symself(otri); \
- lnextself(otri); \
- symself(otri);
-
-/* rprev() moves one edge clockwise about the adjacent triangle. */
-/* (It's best understood by reading Guibas and Stolfi. It involves */
-/* changing triangles twice.) */
-
-#define rprev(otri1, otri2) \
- sym(otri1, otri2); \
- lprevself(otri2); \
- symself(otri2);
-
-#define rprevself(otri) \
- symself(otri); \
- lprevself(otri); \
- symself(otri);
-
-/* These primitives determine or set the origin, destination, or apex of a */
-/* triangle. */
-
-#define org(otri, vertexptr) \
- vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
-
-#define dest(otri, vertexptr) \
- vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
-
-#define apex(otri, vertexptr) \
- vertexptr = (vertex) (otri).tri[(otri).orient + 3]
-
-#define setorg(otri, vertexptr) \
- (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
-
-#define setdest(otri, vertexptr) \
- (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
-
-#define setapex(otri, vertexptr) \
- (otri).tri[(otri).orient + 3] = (triangle) vertexptr
-
-/* Bond two triangles together. */
-
-#define bond(otri1, otri2) \
- (otri1).tri[(otri1).orient] = encode(otri2); \
- (otri2).tri[(otri2).orient] = encode(otri1)
-
-/* Dissolve a bond (from one side). Note that the other triangle will still */
-/* think it's connected to this triangle. Usually, however, the other */
-/* triangle is being deleted entirely, or bonded to another triangle, so */
-/* it doesn't matter. */
-
-#define dissolve(otri) \
- (otri).tri[(otri).orient] = (triangle) m->dummytri
-
-/* Copy an oriented triangle. */
-
-#define otricopy(otri1, otri2) \
- (otri2).tri = (otri1).tri; \
- (otri2).orient = (otri1).orient
-
-/* Test for equality of oriented triangles. */
-
-#define otriequal(otri1, otri2) \
- (((otri1).tri == (otri2).tri) && \
- ((otri1).orient == (otri2).orient))
-
-/* Primitives to infect or cure a triangle with the virus. These rely on */
-/* the assumption that all subsegments are aligned to four-byte boundaries.*/
-
-#define infect(otri) \
- (otri).tri[6] = (triangle) \
- ((unsigned long) (otri).tri[6] | (unsigned long) 2l)
-
-#define uninfect(otri) \
- (otri).tri[6] = (triangle) \
- ((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)
-
-/* Test a triangle for viral infection. */
-
-#define infected(otri) \
- (((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)
-
-/* Check or set a triangle's attributes. */
-
-#define elemattribute(otri, attnum) \
- ((REAL *) (otri).tri)[m->elemattribindex + (attnum)]
-
-#define setelemattribute(otri, attnum, value) \
- ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value
-
-/* Check or set a triangle's maximum area bound. */
-
-#define areabound(otri) ((REAL *) (otri).tri)[m->areaboundindex]
-
-#define setareabound(otri, value) \
- ((REAL *) (otri).tri)[m->areaboundindex] = value
-
-/* Check or set a triangle's deallocation. Its second pointer is set to */
-/* NULL to indicate that it is not allocated. (Its first pointer is used */
-/* for the stack of dead items.) Its fourth pointer (its first vertex) */
-/* is set to NULL in case a `badtriang' structure points to it. */
-
-#define deadtri(tria) ((tria)[1] == (triangle) NULL)
-
-#define killtri(tria) \
- (tria)[1] = (triangle) NULL; \
- (tria)[3] = (triangle) NULL
-
-/********* Primitives for subsegments *********/
-/* */
-/* */
-
-/* sdecode() converts a pointer to an oriented subsegment. The orientation */
-/* is extracted from the least significant bit of the pointer. The two */
-/* least significant bits (one for orientation, one for viral infection) */
-/* are masked out to produce the real pointer. */
-
-#define sdecode(sptr, osub) \
- (osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l); \
- (osub).ss = (subseg *) \
- ((unsigned long) (sptr) & ~ (unsigned long) 3l)
-
-/* sencode() compresses an oriented subsegment into a single pointer. It */
-/* relies on the assumption that all subsegments are aligned to two-byte */
-/* boundaries, so the least significant bit of (osub).ss is zero. */
-
-#define sencode(osub) \
- (subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)
-
-/* ssym() toggles the orientation of a subsegment. */
-
-#define ssym(osub1, osub2) \
- (osub2).ss = (osub1).ss; \
- (osub2).ssorient = 1 - (osub1).ssorient
-
-#define ssymself(osub) \
- (osub).ssorient = 1 - (osub).ssorient
-
-/* spivot() finds the other subsegment (from the same segment) that shares */
-/* the same origin. */
-
-#define spivot(osub1, osub2) \
- sptr = (osub1).ss[(osub1).ssorient]; \
- sdecode(sptr, osub2)
-
-#define spivotself(osub) \
- sptr = (osub).ss[(osub).ssorient]; \
- sdecode(sptr, osub)
-
-/* snext() finds the next subsegment (from the same segment) in sequence; */
-/* one whose origin is the input subsegment's destination. */
-
-#define snext(osub1, osub2) \
- sptr = (osub1).ss[1 - (osub1).ssorient]; \
- sdecode(sptr, osub2)
-
-#define snextself(osub) \
- sptr = (osub).ss[1 - (osub).ssorient]; \
- sdecode(sptr, osub)
-
-/* These primitives determine or set the origin or destination of a */
-/* subsegment or the segment that includes it. */
-
-#define sorg(osub, vertexptr) \
- vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
-
-#define sdest(osub, vertexptr) \
- vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
-
-#define setsorg(osub, vertexptr) \
- (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
-
-#define setsdest(osub, vertexptr) \
- (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
-
-#define segorg(osub, vertexptr) \
- vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
-
-#define segdest(osub, vertexptr) \
- vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
-
-#define setsegorg(osub, vertexptr) \
- (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
-
-#define setsegdest(osub, vertexptr) \
- (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
-
-/* These primitives read or set a boundary marker. Boundary markers are */
-/* used to hold user-defined tags for setting boundary conditions in */
-/* finite element solvers. */
-
-#define mark(osub) (* (int *) ((osub).ss + 8))
-
-#define setmark(osub, value) \
- * (int *) ((osub).ss + 8) = value
-
-/* Bond two subsegments together. */
-
-#define sbond(osub1, osub2) \
- (osub1).ss[(osub1).ssorient] = sencode(osub2); \
- (osub2).ss[(osub2).ssorient] = sencode(osub1)
-
-/* Dissolve a subsegment bond (from one side). Note that the other */
-/* subsegment will still think it's connected to this subsegment. */
-
-#define sdissolve(osub) \
- (osub).ss[(osub).ssorient] = (subseg) m->dummysub
-
-/* Copy a subsegment. */
-
-#define subsegcopy(osub1, osub2) \
- (osub2).ss = (osub1).ss; \
- (osub2).ssorient = (osub1).ssorient
-
-/* Test for equality of subsegments. */
-
-#define subsegequal(osub1, osub2) \
- (((osub1).ss == (osub2).ss) && \
- ((osub1).ssorient == (osub2).ssorient))
-
-/* Check or set a subsegment's deallocation. Its second pointer is set to */
-/* NULL to indicate that it is not allocated. (Its first pointer is used */
-/* for the stack of dead items.) Its third pointer (its first vertex) */
-/* is set to NULL in case a `badsubseg' structure points to it. */
-
-#define deadsubseg(sub) ((sub)[1] == (subseg) NULL)
-
-#define killsubseg(sub) \
- (sub)[1] = (subseg) NULL; \
- (sub)[2] = (subseg) NULL
-
-/********* Primitives for interacting triangles and subsegments *********/
-/* */
-/* */
-
-/* tspivot() finds a subsegment abutting a triangle. */
-
-#define tspivot(otri, osub) \
- sptr = (subseg) (otri).tri[6 + (otri).orient]; \
- sdecode(sptr, osub)
-
-/* stpivot() finds a triangle abutting a subsegment. It requires that the */
-/* variable `ptr' of type `triangle' be defined. */
-
-#define stpivot(osub, otri) \
- ptr = (triangle) (osub).ss[6 + (osub).ssorient]; \
- decode(ptr, otri)
-
-/* Bond a triangle to a subsegment. */
-
-#define tsbond(otri, osub) \
- (otri).tri[6 + (otri).orient] = (triangle) sencode(osub); \
- (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
-
-/* Dissolve a bond (from the triangle side). */
-
-#define tsdissolve(otri) \
- (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
-
-/* Dissolve a bond (from the subsegment side). */
-
-#define stdissolve(osub) \
- (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
-
-/********* Primitives for vertices *********/
-/* */
-/* */
-
-#define vertexmark(vx) ((int *) (vx))[m->vertexmarkindex]
-
-#define setvertexmark(vx, value) \
- ((int *) (vx))[m->vertexmarkindex] = value
-
-#define vertextype(vx) ((int *) (vx))[m->vertexmarkindex + 1]
-
-#define setvertextype(vx, value) \
- ((int *) (vx))[m->vertexmarkindex + 1] = value
-
-#define vertex2tri(vx) ((triangle *) (vx))[m->vertex2triindex]
-
-#define setvertex2tri(vx, value) \
- ((triangle *) (vx))[m->vertex2triindex] = value
-
-/** **/
-/** **/
-/********* Mesh manipulation primitives end here *********/
-
-
-
-void printtriangle(struct mesh *m, struct behavior *b, struct otri *t);
-void printsubseg(struct mesh *m, struct behavior *b, struct osub *s);
-void quality_statistics(struct mesh *m, struct behavior *b);
-void statistics(struct mesh *m, struct behavior *b);
-// provided by triangle.c
-void traversalinit(struct memorypool *pool);
-REAL counterclockwise(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc);
-triangle *triangletraverse(struct mesh *m);
diff --git a/vtm/src/org/oscim/renderer/ExtrusionRenderer.java b/vtm/src/org/oscim/renderer/ExtrusionRenderer.java
index 433ff26b..5a65a52d 100644
--- a/vtm/src/org/oscim/renderer/ExtrusionRenderer.java
+++ b/vtm/src/org/oscim/renderer/ExtrusionRenderer.java
@@ -165,8 +165,6 @@ public class ExtrusionRenderer extends LayerRenderer {
private final boolean debug = false;
- //private final float[] mVPMatrix = new float[16];
-
@Override
protected void render(MapPosition pos, Matrices m) {
// TODO one could render in one pass to texture and then draw the texture
diff --git a/vtm/src/org/oscim/renderer/elements/ExtrusionLayer.java b/vtm/src/org/oscim/renderer/elements/ExtrusionLayer.java
index 7bd88b1d..b7a44bab 100644
--- a/vtm/src/org/oscim/renderer/elements/ExtrusionLayer.java
+++ b/vtm/src/org/oscim/renderer/elements/ExtrusionLayer.java
@@ -25,7 +25,7 @@ import org.oscim.core.Tile;
import org.oscim.renderer.BufferObject;
import org.oscim.renderer.MapRenderer;
import org.oscim.utils.LineClipper;
-import org.oscim.utils.geom.Triangulator;
+import org.oscim.utils.Tessellator;
/**
* @author Hannes Janetzek
@@ -126,7 +126,7 @@ public class ExtrusionLayer extends RenderElement {
// check: drop last point from explicitly closed rings
int len = length;
if (points[ppos] == points[ppos + len - 2]
- && points[ppos + 1] == points[ppos + len - 1]) {
+ && points[ppos + 1] == points[ppos + len - 1]) {
len -= 2;
Log.d(TAG, "explicit closed poly " + len);
}
@@ -184,15 +184,8 @@ public class ExtrusionLayer extends RenderElement {
rings++;
}
- // triangulate up to 600 points (limited only by prepared buffers)
- // some buildings in paris have even more...
- if (len > 1200) {
- Log.d(TAG, ">>> skip building : " + len + " <<<");
- return;
- }
-
- int used = Triangulator.triangulate(points, ppos, len, index, ipos, rings,
- startVertex + 1, mCurIndices[IND_ROOF]);
+ int used = Tessellator.triangulate(points, ppos, len, index, ipos, rings,
+ startVertex + 1, mCurIndices[IND_ROOF]);
if (used > 0) {
// get back to the last item added..
@@ -204,7 +197,7 @@ public class ExtrusionLayer extends RenderElement {
}
private boolean addOutline(float[] points, int pos, int len, float minHeight, float height,
- boolean convex) {
+ boolean convex) {
// add two vertices for last face to make zigzag indices work
boolean addFace = (len % 4 != 0);
diff --git a/vtm/src/org/oscim/utils/Tessellator.java b/vtm/src/org/oscim/utils/Tessellator.java
new file mode 100644
index 00000000..3d16db4e
--- /dev/null
+++ b/vtm/src/org/oscim/utils/Tessellator.java
@@ -0,0 +1,103 @@
+package org.oscim.utils;
+
+import org.oscim.renderer.elements.VertexItem;
+
+public class Tessellator {
+ private static final int RESULT_VERTICES = 0;
+ //private static final int RESULT_TRIANGLES = 1;
+
+ private static final short[] coordinates = new short[720];
+
+ public static synchronized int triangulate(float[] points, int ppos, int plen, short[] index,
+ int ipos, int rings, int vertexOffset, VertexItem outTris) {
+
+ int[] result = new int[2];
+
+ int numPoints = 0;
+ for (int i = 0; i < rings; i++)
+ numPoints += index[ipos + i];
+
+ long ctx = Tessellator.tessellate(points, ppos, index, ipos, rings, result);
+ if ((numPoints / 2) < result[RESULT_VERTICES]) {
+ //Log.d(TAG, "nup" + Arrays.toString(result) + " " + numPoints);
+ Tessellator.tessFinish(ctx);
+ return 0;
+ }
+
+ //while (Tessellator.tessGetCoordinates(ctx, coordinates, 2) > 0) {
+ // Log.d(TAG, Arrays.toString(coordinates));
+ //}
+
+ int cnt;
+ int numIndices = 0;
+
+ while ((cnt = Tessellator.tessGetIndices(ctx, coordinates)) > 0) {
+ //if (cnt > (VertexItem.SIZE - outTris.used))
+ // Log.d(TAG, "ok" + Arrays.toString(result));
+
+ //Log.d(TAG,Arrays.toString(coordinates));
+ numIndices += cnt;
+
+ for (int j = 0; j < cnt; j++)
+ coordinates[j] *= 2;
+
+ // when a ring has an odd number of points one (or rather two)
+ // additional vertices will be added. so the following rings
+ // needs extra offset
+ int shift = 0;
+ for (int i = 0, m = rings - 1; i < m; i++) {
+ shift += (index[ipos + i]);
+
+ // even number of points?
+ if (((index[ipos + i] >> 1) & 1) == 0)
+ continue;
+
+ for (int j = 0; j < cnt; j++)
+ if (coordinates[j] >= shift)
+ coordinates[j] += 2;
+
+ shift += 2;
+ }
+
+ for (int j = 0; j < cnt;) {
+ int outPos = outTris.used;
+ short[] v = outTris.vertices;
+
+ if (outPos == VertexItem.SIZE) {
+ outTris.next = VertexItem.pool.get();
+ outTris = outTris.next;
+ v = outTris.vertices;
+ outPos = 0;
+ }
+
+ // shift to vertex offset
+ v[outPos++] = (short) (vertexOffset + coordinates[j++]);
+ v[outPos++] = (short) (vertexOffset + coordinates[j++]);
+ v[outPos++] = (short) (vertexOffset + coordinates[j++]);
+ outTris.used = outPos;
+ }
+ }
+
+ Tessellator.tessFinish(ctx);
+
+ return numIndices;
+ }
+
+ /**
+ * @param points an array of x,y coordinates
+ * @param pos position in points array
+ * @param index geom indices
+ * @param ipos position in index array
+ * @param numRings number of rings in polygon == outer(1) + inner rings
+ * @param result contains number of vertices and number of triangles
+ * @return context - must be freed with tessFinish()
+ */
+ public static native long tessellate(float[] points, int pos,
+ short[] index, int ipos, int numRings, int[] result);
+
+ public static native void tessFinish(long ctx);
+
+ public static native int tessGetCoordinates(long ctx, short[] coordinates, float scale);
+
+ public static native int tessGetIndices(long ctx, short[] indices);
+}
diff --git a/vtm/src/org/oscim/utils/geom/Triangulator.java b/vtm/src/org/oscim/utils/geom/Triangulator.java
deleted file mode 100644
index 01220424..00000000
--- a/vtm/src/org/oscim/utils/geom/Triangulator.java
+++ /dev/null
@@ -1,67 +0,0 @@
-package org.oscim.utils.geom;
-
-import java.nio.ByteBuffer;
-import java.nio.ByteOrder;
-import java.nio.ShortBuffer;
-
-import org.oscim.renderer.elements.VertexItem;
-
-public class Triangulator {
- private static boolean initialized = false;
- private static ShortBuffer sBuf;
-
- public static synchronized int triangulate(float[] points, int ppos, int plen, short[] index,
- int ipos, int rings, int vertexOffset, VertexItem outTris) {
-
- if (!initialized) {
- // FIXME also cleanup on shutdown!
- sBuf = ByteBuffer.allocateDirect(1800 * 2).order(ByteOrder.nativeOrder())
- .asShortBuffer();
-
- initialized = true;
- }
-
- sBuf.clear();
- sBuf.put(index, ipos, rings);
-
- int numTris = triangulate(points, ppos, plen, rings, sBuf, vertexOffset);
-
- int numIndices = numTris * 3;
- sBuf.limit(numIndices);
- sBuf.position(0);
-
- for (int k = 0, cnt = 0; k < numIndices; k += cnt) {
-
- if (outTris.used == VertexItem.SIZE) {
- outTris.next = VertexItem.pool.get();
- outTris = outTris.next;
- }
-
- cnt = VertexItem.SIZE - outTris.used;
-
- if (k + cnt > numIndices)
- cnt = numIndices - k;
-
- sBuf.get(outTris.vertices, outTris.used, cnt);
- outTris.used += cnt;
- }
-
- return numIndices;
- }
-
- /**
- * @param points an array of x,y coordinates
- * @param pos position in points array
- * @param len number of points * 2 (i.e. values to read)
- * @param numRings number of rings in polygon == outer(1) + inner rings
- * @param io input: number of points in rings - times 2!
- * output: indices of triangles, 3 per triangle :) (indices use
- * stride=2, i.e. 0,2,4...)
- * @param ioffset offset used to add offset to indices
- * @return number of triangles in io buffer
- */
- public static native int triangulate(float[] points, int pos, int len, int numRings,
- ShortBuffer io, int ioffset) /*-{
- return 0;
- }-*/;
-}