remove unused functions

This commit is contained in:
Hannes Janetzek 2013-09-20 13:37:59 +02:00
parent 57b94e1d5d
commit eab0f5e87a

View File

@ -14,351 +14,33 @@
*/
package org.oscim.utils;
import org.oscim.core.Point;
public final class GeometryUtils {
/**
* Calculates the center of the minimum bounding rectangle for the given
* coordinates.
*
* @param coordinates
* the coordinates for which calculation should be done.
* @return the center coordinates of the minimum bounding rectangle.
*/
static float[] calculateCenterOfBoundingBox(float[] coordinates) {
float longitudeMin = coordinates[0];
float longitudeMax = coordinates[0];
float latitudeMax = coordinates[1];
float latitudeMin = coordinates[1];
for (int i = 2; i < coordinates.length; i += 2) {
if (coordinates[i] < longitudeMin) {
longitudeMin = coordinates[i];
} else if (coordinates[i] > longitudeMax) {
longitudeMax = coordinates[i];
}
if (coordinates[i + 1] < latitudeMin) {
latitudeMin = coordinates[i + 1];
} else if (coordinates[i + 1] > latitudeMax) {
latitudeMax = coordinates[i + 1];
}
}
return new float[] { (longitudeMin + longitudeMax) / 2, (latitudeMax + latitudeMin) / 2 };
}
/**
* @param way
* the coordinates of the way.
* @return true if the given way is closed, false otherwise.
*/
static boolean isClosedWay(float[] way) {
return Float.compare(way[0], way[way.length - 2]) == 0
&& Float.compare(way[1], way[way.length - 1]) == 0;
}
private GeometryUtils() {
throw new IllegalStateException();
}
public static byte linesIntersect(
double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4) {
// Return false if either of the lines have zero length
if (x1 == x2 && y1 == y2 || x3 == x4 && y3 == y4) {
return 0;
}
// Fastest method, based on Franklin Antonio's
// "Faster Line Segment Intersection" topic "in Graphics Gems III" book
// (http://www.graphicsgems.org/)
double ax = x2 - x1;
double ay = y2 - y1;
double bx = x3 - x4;
double by = y3 - y4;
double cx = x1 - x3;
double cy = y1 - y3;
double alphaNumerator = by * cx - bx * cy;
double commonDenominator = ay * bx - ax * by;
if (commonDenominator > 0) {
if (alphaNumerator < 0 || alphaNumerator > commonDenominator) {
return 0;
}
} else if (commonDenominator < 0) {
if (alphaNumerator > 0 || alphaNumerator < commonDenominator) {
return 0;
}
}
double betaNumerator = ax * cy - ay * cx;
if (commonDenominator > 0) {
if (betaNumerator < 0 || betaNumerator > commonDenominator) {
return 0;
}
} else if (commonDenominator < 0) {
if (betaNumerator > 0 || betaNumerator < commonDenominator) {
return 0;
}
}
if (commonDenominator == 0) {
// This code wasn't in Franklin Antonio's method. It was added by Keith
// Woodward.
// The lines are parallel.
// Check if they're collinear.
double y3LessY1 = y3 - y1;
// see http://mathworld.wolfram.com/Collinear.html
double collinearityTestForP3 = x1 * (y2 - y3) + x2 * (y3LessY1) + x3 * (y1 - y2);
// If p3 is collinear with p1 and p2 then p4 will also be collinear,
// since p1-p2 is parallel with p3-p4
if (collinearityTestForP3 == 0) {
// The lines are collinear. Now check if they overlap.
if (x1 >= x3 && x1 <= x4 || x1 <= x3 && x1 >= x4 || x2 >= x3 && x2 <= x4
|| x2 <= x3 && x2 >= x4
|| x3 >= x1 && x3 <= x2 || x3 <= x1 && x3 >= x2) {
if (y1 >= y3 && y1 <= y4 || y1 <= y3 && y1 >= y4 || y2 >= y3 && y2 <= y4
|| y2 <= y3 && y2 >= y4
|| y3 >= y1 && y3 <= y2 || y3 <= y1 && y3 >= y2) {
return 2;
}
}
}
return 0;
}
return 1;
}
static boolean doesIntersect(double l1x1, double l1y1, double l1x2, double l1y2, double l2x1,
double l2y1,
double l2x2, double l2y2) {
double denom = ((l2y2 - l2y1) * (l1x2 - l1x1)) - ((l2x2 - l2x1) * (l1y2 - l1y1));
if (denom == 0.0f) {
return false;
}
double ua = (((l2x2 - l2x1) * (l1y1 - l2y1)) - ((l2y2 - l2y1) * (l1x1 - l2x1))) / denom;
double ub = (((l1x2 - l1x1) * (l1y1 - l2y1)) - ((l1y2 - l1y1) * (l1x1 - l2x1))) / denom;
return ((ua >= 0.0d) && (ua <= 1.0d) && (ub >= 0.0d) && (ub <= 1.0d));
}
public static boolean lineIntersect(
int x1, int y1, int x2, int y2,
int x3, int y3, int x4, int y4) {
float denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
if (denom == 0.0) { // Lines are parallel.
return false;
}
float ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denom;
float ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denom;
if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) {
return true;
}
return false;
}
// http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
// public static double pointToLineDistance(Point A, Point B, Point P) {
// double normalLength = Math.hypot(B.x - A.x, B.y - A.y);
// return Math.abs((P.x - A.x) * (B.y - A.y) - (P.y - A.y) * (B.x - A.x)) / normalLength;
// }
// from libosmscout-render
public static byte calcLinesIntersect(
double ax1, double ay1,
double ax2, double ay2,
double bx1, double by1,
double bx2, double by2,
Point point)
{
double ua_numr = (bx2 - bx1) * (ay1 - by1) - (by2 - by1) * (ax1 - bx1);
double ub_numr = (ax2 - ax1) * (ay1 - by1) - (ay2 - ay1) * (ax1 - bx1);
double denr = (by2 - by1) * (ax2 - ax1) - (bx2 - bx1) * (ay2 - ay1);
if (denr == 0.0)
{
// lines are coincident
if (ua_numr == 0.0 && ub_numr == 0.0)
return 2; //XSEC_COINCIDENT;
// lines are parallel
return 3; //XSEC_PARALLEL;
}
double ua = ua_numr / denr;
//double ub = ub_numr / denr;
//if (ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0)
{
point.x = ax1 + ua * (ax2 - ax1);
point.y = ay1 + ua * (ay2 - ay1);
return 0; //XSEC_TRUE;
}
//return 1; //XSEC_FALSE;
}
public static float dist(float x1, float y1, float x2, float y2) {
return (float) Math.sqrt((x1 - x2) * (x1 - x2) + (y2 - y1) * (y2 - y1));
}
public static float pointLineDistance(float x1, float y1, float x2, float y2, float x3, float y3) {
// taken from kartograph/simplify/douglas_peucker.py:
// the perpendicular distance from a point (x3,y3) to the line from (x1,y1) to (x2,y2)
// taken from http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/
float d = dist(x1, y1, x2, y2);
float u = (x3 - x1) * (x2 - x1) + (y3 - y1) * (y2 - y1) / (d * d);
float x = x1 + u * (x2 - x1);
float y = y1 + u * (y2 - y1);
return dist(x, y, x3, y3);
}
/*
* from World Wind Android:
* Copyright (C) 2012 United States Government as represented by the
* Administrator of the National Aeronautics and Space Administration.
* All Rights Reserved.
* .
* given the current and previous locations of two points, compute the angle
* of the rotation they trace out
*/
public static double computeRotationAngle(float x, float y, float x2, float y2,
float xPrev, float yPrev, float xPrev2, float yPrev2)
{
// can't compute if no previous points
if (xPrev < 0 || yPrev < 0 || xPrev2 < 0 || yPrev2 < 0)
return 0;
if ((x - x2) == 0 || (xPrev - xPrev2) == 0)
return 0;
// 1. compute lines connecting pt1 to pt2, and pt1' to pt2'
float slope = (y - y2) / (x - x2);
float slopePrev = (yPrev - yPrev2) / (xPrev - xPrev2);
// b = y - mx
float b = y - slope * x;
float bPrev = yPrev - slopePrev * xPrev;
// 2. use Cramer's Rule to find the intersection of the two lines
float det1 = -slope * 1 + slopePrev * 1;
float det2 = b * 1 - bPrev * 1;
float det3 = (-slope * bPrev) - (-slopePrev * b);
// check for case where lines are parallel
if (det1 == 0)
return 0;
// compute the intersection point
float isectX = det2 / det1;
float isectY = det3 / det1;
// 3. use the law of Cosines to determine the angle covered
// compute lengths of sides of triangle created by pt1, pt1Prev and the intersection pt
double BC = Math.sqrt(Math.pow(x - isectX, 2) + Math.pow(y - isectY, 2));
double AC = Math.sqrt(Math.pow(xPrev - isectX, 2) + Math.pow(yPrev - isectY, 2));
double AB = Math.sqrt(Math.pow(x - xPrev, 2) + Math.pow(y - yPrev, 2));
double dpx, dpy, dcx, dcy;
//this.point1.set(xPrev - isectX, yPrev - isectY);
//this.point2.set(x - isectX, y - isectY);
// if one finger stayed fixed, may have degenerate triangle, so use other triangle instead
if (BC == 0 || AC == 0 || AB == 0)
{
BC = Math.sqrt(Math.pow(x2 - isectX, 2) + Math.pow(y2 - isectY, 2));
AC = Math.sqrt(Math.pow(xPrev2 - isectX, 2) + Math.pow(yPrev2 - isectY, 2));
AB = Math.sqrt(Math.pow(x2 - xPrev2, 2) + Math.pow(y2 - yPrev2, 2));
//this.point1.set(xPrev2 - isectX, yPrev2 - isectY);
//this.point2.set(x2 - isectX, y2 - isectY);
if (BC == 0 || AC == 0 || AB == 0)
return 0;
dpx = xPrev2 - isectX;
dpy = yPrev2 - isectY;
dcx = x2 - isectX;
dcy = y2 - isectY;
} else {
dpx = xPrev - isectX;
dpy = yPrev - isectY;
dcx = x - isectX;
dcy = y - isectY;
}
// Law of Cosines
double num = (Math.pow(BC, 2) + Math.pow(AC, 2) - Math.pow(AB, 2));
double denom = (2 * BC * AC);
double BCA = Math.acos(num / denom);
// use cross product to determine if rotation is positive or negative
//if (this.point1.cross3(this.point2).z < 0)
if (dpx * dcy - dpy * dcx < 0)
BCA = 2 * Math.PI - BCA;
return Math.toDegrees(BCA);
}
// from www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
/**
* test if point x/y is in polygon defined by vertices[offset ... offset+length]
* */
public static boolean pointInPoly(float x, float y, float[] vertices, int length,
int offset) {
* test if point x/y is in polygon defined by vertices[offset ...
* offset+length]
*/
public static boolean pointInPoly(float x, float y, float[] vertices,
int length, int offset) {
int end = (offset + length);
boolean inside = false;
for (int i = offset, j = (end - 2); i < end; j = i, i += 2) {
if (((vertices[i + 1] > y) != (vertices[j + 1] > y)) &&
(x < (vertices[j] - vertices[i]) * (y - vertices[i + 1])
/ (vertices[j + 1] - vertices[i + 1]) + vertices[i]))
(x < (vertices[j] - vertices[i]) * (y - vertices[i + 1])
/ (vertices[j + 1] - vertices[i + 1]) + vertices[i]))
inside = !inside;
}
return inside;
}
// public static float areaSigned(Point p1, Point p2, Point p3) {
// return ((p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y)) * 0.5f;
// }
//
// public static float areaSigned(float ax, float ay, float bx, float by, float cx, float cy) {
// return ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f;
// }
//
public static float area(float ax, float ay, float bx, float by, float cx, float cy) {
float area = ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f;
return area < 0 ? -area : area;
}
//
// public static boolean pointInTri(Point pt, Point p1, Point p2, Point p3) {
// boolean inside = false;
// boolean p1s = p1.y > pt.y;
// boolean p2s = p2.y > pt.y;
// boolean p3s = p3.y > pt.y;
//
// if ((p1s != p3s)
// && (pt.x < (p3.x - p1.x) * (pt.y - p1.y) / (p3.y - p1.y) + p1.x))
// inside = !inside;
//
// if ((p2s != p1s)
// && (pt.x < (p1.x - p2.x) * (pt.y - p2.y) / (p1.y - p2.y) + p2.x))
// inside = !inside;
//
// if ((p3s != p2s)
// && (pt.x < (p2.x - p3.x) * (pt.y - p3.y) / (p2.y - p3.y) + p3.x))
// inside = !inside;
//
// return inside;
// }
// TODO compare with http://alienryderflex.com/polygon/
}