/* * Copyright 2012, 2013 Hannes Janetzek * * This program is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with * this program. If not, see . */ package org.oscim.utils; import org.oscim.core.PointD; import android.graphics.Point; /** * @author Hannes Janetzek */ public final class GeometryUtils { /** * Calculates the center of the minimum bounding rectangle for the given * coordinates. * * @param coordinates * the coordinates for which calculation should be done. * @return the center coordinates of the minimum bounding rectangle. */ static float[] calculateCenterOfBoundingBox(float[] coordinates) { float longitudeMin = coordinates[0]; float longitudeMax = coordinates[0]; float latitudeMax = coordinates[1]; float latitudeMin = coordinates[1]; for (int i = 2; i < coordinates.length; i += 2) { if (coordinates[i] < longitudeMin) { longitudeMin = coordinates[i]; } else if (coordinates[i] > longitudeMax) { longitudeMax = coordinates[i]; } if (coordinates[i + 1] < latitudeMin) { latitudeMin = coordinates[i + 1]; } else if (coordinates[i + 1] > latitudeMax) { latitudeMax = coordinates[i + 1]; } } return new float[] { (longitudeMin + longitudeMax) / 2, (latitudeMax + latitudeMin) / 2 }; } /** * @param way * the coordinates of the way. * @return true if the given way is closed, false otherwise. */ static boolean isClosedWay(float[] way) { return Float.compare(way[0], way[way.length - 2]) == 0 && Float.compare(way[1], way[way.length - 1]) == 0; } private GeometryUtils() { throw new IllegalStateException(); } public static byte linesIntersect( double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // Return false if either of the lines have zero length if (x1 == x2 && y1 == y2 || x3 == x4 && y3 == y4) { return 0; } // Fastest method, based on Franklin Antonio's // "Faster Line Segment Intersection" topic "in Graphics Gems III" book // (http://www.graphicsgems.org/) double ax = x2 - x1; double ay = y2 - y1; double bx = x3 - x4; double by = y3 - y4; double cx = x1 - x3; double cy = y1 - y3; double alphaNumerator = by * cx - bx * cy; double commonDenominator = ay * bx - ax * by; if (commonDenominator > 0) { if (alphaNumerator < 0 || alphaNumerator > commonDenominator) { return 0; } } else if (commonDenominator < 0) { if (alphaNumerator > 0 || alphaNumerator < commonDenominator) { return 0; } } double betaNumerator = ax * cy - ay * cx; if (commonDenominator > 0) { if (betaNumerator < 0 || betaNumerator > commonDenominator) { return 0; } } else if (commonDenominator < 0) { if (betaNumerator > 0 || betaNumerator < commonDenominator) { return 0; } } if (commonDenominator == 0) { // This code wasn't in Franklin Antonio's method. It was added by Keith // Woodward. // The lines are parallel. // Check if they're collinear. double y3LessY1 = y3 - y1; double collinearityTestForP3 = x1 * (y2 - y3) + x2 * (y3LessY1) + x3 * (y1 - y2); // see // http://mathworld.wolfram.com/Collinear.html // If p3 is collinear with p1 and p2 then p4 will also be collinear, // since p1-p2 is parallel with p3-p4 if (collinearityTestForP3 == 0) { // The lines are collinear. Now check if they overlap. if (x1 >= x3 && x1 <= x4 || x1 <= x3 && x1 >= x4 || x2 >= x3 && x2 <= x4 || x2 <= x3 && x2 >= x4 || x3 >= x1 && x3 <= x2 || x3 <= x1 && x3 >= x2) { if (y1 >= y3 && y1 <= y4 || y1 <= y3 && y1 >= y4 || y2 >= y3 && y2 <= y4 || y2 <= y3 && y2 >= y4 || y3 >= y1 && y3 <= y2 || y3 <= y1 && y3 >= y2) { return 2; } } } return 0; } return 1; } static boolean doesIntersect(double l1x1, double l1y1, double l1x2, double l1y2, double l2x1, double l2y1, double l2x2, double l2y2) { double denom = ((l2y2 - l2y1) * (l1x2 - l1x1)) - ((l2x2 - l2x1) * (l1y2 - l1y1)); if (denom == 0.0f) { return false; } double ua = (((l2x2 - l2x1) * (l1y1 - l2y1)) - ((l2y2 - l2y1) * (l1x1 - l2x1))) / denom; double ub = (((l1x2 - l1x1) * (l1y1 - l2y1)) - ((l1y2 - l1y1) * (l1x1 - l2x1))) / denom; return ((ua >= 0.0d) && (ua <= 1.0d) && (ub >= 0.0d) && (ub <= 1.0d)); } public static boolean lineIntersect( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4) { float denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); if (denom == 0.0) { // Lines are parallel. return false; } float ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denom; float ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denom; if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) { return true; } return false; } // http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line public static double pointToLineDistance(Point A, Point B, Point P) { double normalLength = Math.hypot(B.x - A.x, B.y - A.y); return Math.abs((P.x - A.x) * (B.y - A.y) - (P.y - A.y) * (B.x - A.x)) / normalLength; } // from libosmscout-render public static byte calcLinesIntersect( double ax1, double ay1, double ax2, double ay2, double bx1, double by1, double bx2, double by2, PointD point) { double ua_numr = (bx2 - bx1) * (ay1 - by1) - (by2 - by1) * (ax1 - bx1); double ub_numr = (ax2 - ax1) * (ay1 - by1) - (ay2 - ay1) * (ax1 - bx1); double denr = (by2 - by1) * (ax2 - ax1) - (bx2 - bx1) * (ay2 - ay1); if (denr == 0.0) { // lines are coincident if (ua_numr == 0.0 && ub_numr == 0.0) return 2; //XSEC_COINCIDENT; // lines are parallel return 3; //XSEC_PARALLEL; } double ua = ua_numr / denr; double ub = ub_numr / denr; //if (ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0) { point.x = ax1 + ua * (ax2 - ax1); point.y = ay1 + ua * (ay2 - ay1); return 0; //XSEC_TRUE; } //return 1; //XSEC_FALSE; } public static float dist(float x1, float y1, float x2, float y2) { return (float) Math.sqrt((x1 - x2) * (x1 - x2) + (y2 - y1) * (y2 - y1)); } public static float pointLineDistance(float x1, float y1, float x2, float y2, float x3, float y3) { // taken from kartograph/simplify/douglas_peucker.py: // the perpendicular distance from a point (x3,y3) to the line from (x1,y1) to (x2,y2) // taken from http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/ float d = dist(x1, y1, x2, y2); float u = (x3 - x1) * (x2 - x1) + (y3 - y1) * (y2 - y1) / (d * d); float x = x1 + u * (x2 - x1); float y = y1 + u * (y2 - y1); return dist(x, y, x3, y3); } /* * from World Wind Android: * Copyright (C) 2012 United States Government as represented by the * Administrator of the National Aeronautics and Space Administration. * All Rights Reserved. * . * given the current and previous locations of two points, compute the angle * of the rotation they trace out */ public static double computeRotationAngle(float x, float y, float x2, float y2, float xPrev, float yPrev, float xPrev2, float yPrev2) { // can't compute if no previous points if (xPrev < 0 || yPrev < 0 || xPrev2 < 0 || yPrev2 < 0) return 0; if ((x - x2) == 0 || (xPrev - xPrev2) == 0) return 0; // 1. compute lines connecting pt1 to pt2, and pt1' to pt2' float slope = (y - y2) / (x - x2); float slopePrev = (yPrev - yPrev2) / (xPrev - xPrev2); // b = y - mx float b = y - slope * x; float bPrev = yPrev - slopePrev * xPrev; // 2. use Cramer's Rule to find the intersection of the two lines float det1 = -slope * 1 + slopePrev * 1; float det2 = b * 1 - bPrev * 1; float det3 = (-slope * bPrev) - (-slopePrev * b); // check for case where lines are parallel if (det1 == 0) return 0; // compute the intersection point float isectX = det2 / det1; float isectY = det3 / det1; // 3. use the law of Cosines to determine the angle covered // compute lengths of sides of triangle created by pt1, pt1Prev and the intersection pt double BC = Math.sqrt(Math.pow(x - isectX, 2) + Math.pow(y - isectY, 2)); double AC = Math.sqrt(Math.pow(xPrev - isectX, 2) + Math.pow(yPrev - isectY, 2)); double AB = Math.sqrt(Math.pow(x - xPrev, 2) + Math.pow(y - yPrev, 2)); double dpx, dpy, dcx, dcy; //this.point1.set(xPrev - isectX, yPrev - isectY); //this.point2.set(x - isectX, y - isectY); // if one finger stayed fixed, may have degenerate triangle, so use other triangle instead if (BC == 0 || AC == 0 || AB == 0) { BC = Math.sqrt(Math.pow(x2 - isectX, 2) + Math.pow(y2 - isectY, 2)); AC = Math.sqrt(Math.pow(xPrev2 - isectX, 2) + Math.pow(yPrev2 - isectY, 2)); AB = Math.sqrt(Math.pow(x2 - xPrev2, 2) + Math.pow(y2 - yPrev2, 2)); //this.point1.set(xPrev2 - isectX, yPrev2 - isectY); //this.point2.set(x2 - isectX, y2 - isectY); if (BC == 0 || AC == 0 || AB == 0) return 0; dpx = xPrev2 - isectX; dpy = yPrev2 - isectY; dcx = x2 - isectX; dcy = y2 - isectY; } else { dpx = xPrev - isectX; dpy = yPrev - isectY; dcx = x - isectX; dcy = y - isectY; } // Law of Cosines double num = (Math.pow(BC, 2) + Math.pow(AC, 2) - Math.pow(AB, 2)); double denom = (2 * BC * AC); double BCA = Math.acos(num / denom); // use cross product to determine if rotation is positive or negative //if (this.point1.cross3(this.point2).z < 0) if (dpx * dcy - dpy * dcx < 0) BCA = 2 * Math.PI - BCA; return Math.toDegrees(BCA); } // from www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html public static boolean pointInPoly(int nvert, float[] vert, float testx, float testy) { int i, j; boolean inside = false; for (i = 0, j = (nvert - 1) * 2; i < nvert * 2; j = i++) { if (((vert[i * 2 + 1] > testy) != (vert[j * j + 1] > testy)) && (testx < (vert[j * 2] - vert[i * 2]) * (testy - vert[i * 2 + 1]) / (vert[j * 2 + 1] - vert[i * 2 + 1]) + vert[i * 2])) inside = !inside; } return inside; } public static float areaSigned(Point p1, Point p2, Point p3) { return ((p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y))*0.5f; } public static float areaSigned(float ax, float ay, float bx, float by, float cx, float cy) { return ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f; } public static float area(float ax, float ay, float bx, float by, float cx, float cy) { float area = ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f; return area < 0 ? -area : area; } public static boolean pointInTri(Point pt, Point p1, Point p2, Point p3) { boolean inside = false; boolean p1s = p1.y > pt.y; boolean p2s = p2.y > pt.y; boolean p3s = p3.y > pt.y; if ((p1s != p3s) && (pt.x < (p3.x - p1.x) * (pt.y - p1.y) / (p3.y - p1.y) + p1.x)) inside = !inside; if ((p2s != p1s) && (pt.x < (p1.x - p2.x) * (pt.y - p2.y) / (p1.y - p2.y) + p2.x)) inside = !inside; if ((p3s != p2s) && (pt.x < (p2.x - p3.x) * (pt.y - p3.y) / (p2.y - p3.y) + p3.x)) inside = !inside; return inside; } // TODO compare with http://alienryderflex.com/polygon/ }