Hannes Janetzek 83cd73156a split up
2013-10-09 01:56:08 +02:00

7389 lines
319 KiB
C

/*****************************************************************************/
/* */
/* 888888888 ,o, / 888 */
/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
/* 888 888 888 88b 888 888 888 888 888 d888 88b */
/* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */
/* 888 888 888 C888 888 888 888 / 888 q888 */
/* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */
/* "8oo8D */
/* */
/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
/* (triangle.c) */
/* */
/* Version 1.6 */
/* July 28, 2005 */
/* */
/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */
/* Jonathan Richard Shewchuk */
/* 2360 Woolsey #H */
/* Berkeley, California 94705-1927 */
/* jrs@cs.berkeley.edu */
/* */
/* This program may be freely redistributed under the condition that the */
/* copyright notices (including this entire header and the copyright */
/* notice printed when the `-h' switch is selected) are not removed, and */
/* no compensation is received. Private, research, and institutional */
/* use is free. You may distribute modified versions of this code UNDER */
/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
/* customer, and you are instead telling them how they can obtain it for */
/* free, then you are not required to make any arrangement with me.) */
/* */
/* Hypertext instructions for Triangle are available on the Web at */
/* */
/* http://www.cs.cmu.edu/~quake/triangle.html */
/* */
/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */
/* whatsoever. This code is provided "as-is". Use at your own risk. */
/* */
/* Some of the references listed below are marked with an asterisk. [*] */
/* These references are available for downloading from the Web page */
/* */
/* http://www.cs.cmu.edu/~quake/triangle.research.html */
/* */
/* Three papers discussing aspects of Triangle are available. A short */
/* overview appears in "Triangle: Engineering a 2D Quality Mesh */
/* Generator and Delaunay Triangulator," in Applied Computational */
/* Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh */
/* Manocha, editors, Lecture Notes in Computer Science volume 1148, */
/* pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM */
/* Workshop on Applied Computational Geometry). [*] */
/* */
/* The algorithms are discussed in the greatest detail in "Delaunay */
/* Refinement Algorithms for Triangular Mesh Generation," Computational */
/* Geometry: Theory and Applications 22(1-3):21-74, May 2002. [*] */
/* */
/* More detail about the data structures may be found in my dissertation: */
/* "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report */
/* CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
/* Pittsburgh, Pennsylvania, 18 May 1997. [*] */
/* */
/* Triangle was created as part of the Quake Project in the School of */
/* Computer Science at Carnegie Mellon University. For further */
/* information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F. */
/* Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu, */
/* "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous */
/* Media on Parallel Computers," Computer Methods in Applied Mechanics */
/* and Engineering 152(1-2):85-102, 22 January 1998. */
/* */
/* Triangle's Delaunay refinement algorithm for quality mesh generation is */
/* a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm */
/* for Quality 2-Dimensional Mesh Generation," Journal of Algorithms */
/* 18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
/* Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
/* Annual Symposium on Computational Geometry (San Diego, California), */
/* pages 274-280, Association for Computing Machinery, May 1993, */
/* http://portal.acm.org/citation.cfm?id=161150 . */
/* */
/* The Delaunay refinement algorithm has been modified so that it meshes */
/* domains with small input angles well, as described in Gary L. Miller, */
/* Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's */
/* Algorithm Works," Twelfth International Meshing Roundtable, pages */
/* 91-102, Sandia National Laboratories, September 2003. [*] */
/* */
/* My implementation of the divide-and-conquer and incremental Delaunay */
/* triangulation algorithms follows closely the presentation of Guibas */
/* and Stolfi, even though I use a triangle-based data structure instead */
/* of their quad-edge data structure. (In fact, I originally implemented */
/* Triangle using the quad-edge data structure, but the switch to a */
/* triangle-based data structure sped Triangle by a factor of two.) The */
/* mesh manipulation primitives and the two aforementioned Delaunay */
/* triangulation algorithms are described by Leonidas J. Guibas and Jorge */
/* Stolfi, "Primitives for the Manipulation of General Subdivisions and */
/* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */
/* 4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
/* */
/* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */
/* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */
/* Delaunay Triangulation," International Journal of Computer and */
/* Information Science 9(3):219-242, 1980. Triangle's improvement of the */
/* divide-and-conquer algorithm by alternating between vertical and */
/* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */
/* Conquer Algorithm for Constructing Delaunay Triangulations," */
/* Algorithmica 2(2):137-151, 1987. */
/* */
/* The incremental insertion algorithm was first proposed by C. L. Lawson, */
/* "Software for C1 Surface Interpolation," in Mathematical Software III, */
/* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */
/* For point location, I use the algorithm of Ernst P. Mucke, Isaac */
/* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */
/* Preprocessing in Two- and Three-Dimensional Delaunay Triangulations," */
/* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
/* ACM, May 1996. [*] If I were to randomize the order of vertex */
/* insertion (I currently don't bother), their result combined with the */
/* result of Kenneth L. Clarkson and Peter W. Shor, "Applications of */
/* Random Sampling in Computational Geometry II," Discrete & */
/* Computational Geometry 4(1):387-421, 1989, would yield an expected */
/* O(n^{4/3}) bound on running time. */
/* */
/* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */
/* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */
/* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */
/* boundary of the triangulation are maintained in a splay tree for the */
/* purpose of point location. Splay trees are described by Daniel */
/* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
/* Trees," Journal of the ACM 32(3):652-686, July 1985, */
/* http://portal.acm.org/citation.cfm?id=3835 . */
/* */
/* The algorithms for exact computation of the signs of determinants are */
/* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */
/* Point Arithmetic and Fast Robust Geometric Predicates," Discrete & */
/* Computational Geometry 18(3):305-363, October 1997. (Also available */
/* as Technical Report CMU-CS-96-140, School of Computer Science, */
/* Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.) [*] */
/* An abbreviated version appears as Jonathan Richard Shewchuk, "Robust */
/* Adaptive Floating-Point Geometric Predicates," Proceedings of the */
/* Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
/* Many of the ideas for my exact arithmetic routines originate with */
/* Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point */
/* Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
/* Computer Society Press, 1991. [*] Many of the ideas for the correct */
/* evaluation of the signs of determinants are taken from Steven Fortune */
/* and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa- */
/* tional Geometry," Proceedings of the Ninth Annual Symposium on */
/* Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven */
/* Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu- */
/* lations," International Journal of Computational Geometry & Applica- */
/* tions 5(1-2):193-213, March-June 1995. */
/* */
/* The method of inserting new vertices off-center (not precisely at the */
/* circumcenter of every poor-quality triangle) is from Alper Ungor, */
/* "Off-centers: A New Type of Steiner Points for Computing Size-Optimal */
/* Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN */
/* 2004 (Buenos Aires, Argentina), April 2004. */
/* */
/* For definitions of and results involving Delaunay triangulations, */
/* constrained and conforming versions thereof, and other aspects of */
/* triangular mesh generation, see the excellent survey by Marshall Bern */
/* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */
/* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */
/* editors, World Scientific, Singapore, pp. 23-90, 1992. [*] */
/* */
/* The time for incrementally adding PSLG (planar straight line graph) */
/* segments to create a constrained Delaunay triangulation is probably */
/* O(t^2) per segment in the worst case and O(t) per segment in the */
/* common case, where t is the number of triangles that intersect the */
/* segment before it is inserted. This doesn't count point location, */
/* which can be much more expensive. I could improve this to O(d log d) */
/* time, but d is usually quite small, so it's not worth the bother. */
/* (This note does not apply when the -s switch is used, invoking a */
/* different method is used to insert segments.) */
/* */
/* The time for deleting a vertex from a Delaunay triangulation is O(d^2) */
/* in the worst case and O(d) in the common case, where d is the degree */
/* of the vertex being deleted. I could improve this to O(d log d) time, */
/* but d is usually quite small, so it's not worth the bother. */
/* */
/* Ruppert's Delaunay refinement algorithm typically generates triangles */
/* at a linear rate (constant time per triangle) after the initial */
/* triangulation is formed. There may be pathological cases where */
/* quadratic time is required, but these never arise in practice. */
/* */
/* The geometric predicates (circumcenter calculations, segment */
/* intersection formulae, etc.) appear in my "Lecture Notes on Geometric */
/* Robustness" at http://www.cs.berkeley.edu/~jrs/mesh . */
/* */
/* If you make any improvements to this code, please please please let me */
/* know, so that I may obtain the improvements. Even if you don't change */
/* the code, I'd still love to hear what it's being used for. */
/* */
/*****************************************************************************/
#include "triangle_private.h"
/* Fast lookup arrays to speed some of the mesh manipulation primitives. */
int plus1mod3[3] = { 1, 2, 0 };
int minus1mod3[3] = { 2, 0, 1 };
/********* User-defined triangle evaluation routine begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* triunsuitable() Determine if a triangle is unsuitable, and thus must */
/* be further refined. */
/* */
/* You may write your own procedure that decides whether or not a selected */
/* triangle is too big (and needs to be refined). There are two ways to do */
/* this. */
/* */
/* (1) Modify the procedure `triunsuitable' below, then recompile */
/* Triangle. */
/* */
/* (2) Define the symbol EXTERNAL_TEST (either by adding the definition */
/* to this file, or by using the appropriate compiler switch). This way, */
/* you can compile triangle.c separately from your test. Write your own */
/* `triunsuitable' procedure in a separate C file (using the same prototype */
/* as below). Compile it and link the object code with triangle.o. */
/* */
/* This procedure returns 1 if the triangle is too large and should be */
/* refined; 0 otherwise. */
/* */
/*****************************************************************************/
#ifdef EXTERNAL_TEST
int triunsuitable();
#else /* not EXTERNAL_TEST */
int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area) {
REAL dxoa, dxda, dxod;
REAL dyoa, dyda, dyod;
REAL oalen, dalen, odlen;
REAL maxlen;
dxoa = triorg[0] - triapex[0];
dyoa = triorg[1] - triapex[1];
dxda = tridest[0] - triapex[0];
dyda = tridest[1] - triapex[1];
dxod = triorg[0] - tridest[0];
dyod = triorg[1] - tridest[1];
/* Find the squares of the lengths of the triangle's three edges. */
oalen = dxoa * dxoa + dyoa * dyoa;
dalen = dxda * dxda + dyda * dyda;
odlen = dxod * dxod + dyod * dyod;
/* Find the square of the length of the longest edge. */
maxlen = (dalen > oalen) ? dalen : oalen;
maxlen = (odlen > maxlen) ? odlen : maxlen;
if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
return 1;
}
else {
return 0;
}
}
#endif /* not EXTERNAL_TEST */
/** **/
/** **/
/********* User-defined triangle evaluation routine ends here *********/
/********* Memory allocation and program exit wrappers begin here *********/
/** **/
/** **/
void triexit(int status) {
printf("Exit %d.\n", status);
exit(status);
}
VOID *trimalloc(int size) {
VOID *memptr;
memptr = (VOID *) malloc((unsigned int) size);
if (memptr == (VOID *) NULL) {
printf("Error: Out of memory.\n");
triexit(1);
}
return (memptr);
}
void trifree(VOID *memptr) {
free(memptr);
}
/** **/
/** **/
/********* Memory allocation and program exit wrappers end here *********/
/********* User interaction routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* internalerror() Ask the user to send me the defective product. Exit. */
/* */
/*****************************************************************************/
int error_set = 0;
void internalerror() {
error_set = 1;
printf("Triangle is going to quit its job now\n");
//printf(" Please report this bug to jrs@cs.berkeley.edu\n");
///printf(" Include the message above, your input data set, and the exact\n");
//printf(" command line you used to run Triangle.\n");
//triexit(1);
}
/*****************************************************************************/
/* */
/* parsecommandline() Read the command line, identify switches, and set */
/* up options and file names. */
/* */
/*****************************************************************************/
void parsecommandline(int argc, char **argv, struct behavior *b) {
error_set = 0;
#define STARTINDEX 0
int i, j, k;
char workstring[FILENAMESIZE];
b->poly = b->refine = b->quality = 0;
b->vararea = b->fixedarea = b->usertest = 0;
b->regionattrib = b->convex = b->weighted = b->jettison = 0;
b->firstnumber = 1;
b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
b->noiterationnum = 0;
b->noholes = b->noexact = 0;
b->incremental = b->sweepline = 0;
b->dwyer = 1;
b->splitseg = 0;
b->docheck = 0;
b->nobisect = 0;
b->conformdel = 0;
b->steiner = -1;
b->order = 1;
b->minangle = 0.0;
b->maxarea = -1.0;
b->quiet = b->verbose = 0;
for (i = STARTINDEX; i < argc; i++) {
for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
if (argv[i][j] == 'p') {
b->poly = 1;
}
#ifndef CDT_ONLY
if (argv[i][j] == 'r')
{
b->refine = 1;
}
if (argv[i][j] == 'q')
{
b->quality = 1;
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.'))
{
k = 0;
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.'))
{
j++;
workstring[k] = argv[i][j];
k++;
}
workstring[k] = '\0';
b->minangle = (REAL) strtod(workstring, (char **) NULL);
}
else
{
b->minangle = 20.0;
}
}
if (argv[i][j] == 'a')
{
b->quality = 1;
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.'))
{
b->fixedarea = 1;
k = 0;
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.'))
{
j++;
workstring[k] = argv[i][j];
k++;
}
workstring[k] = '\0';
b->maxarea = (REAL) strtod(workstring, (char **) NULL);
if (b->maxarea <= 0.0)
{
printf("Error: Maximum area must be greater than zero.\n");
triexit(1);
}
}
else
{
b->vararea = 1;
}
}
if (argv[i][j] == 'u')
{
b->quality = 1;
b->usertest = 1;
}
#endif /* not CDT_ONLY */
if (argv[i][j] == 'A') {
b->regionattrib = 1;
}
if (argv[i][j] == 'c') {
b->convex = 1;
}
if (argv[i][j] == 'w') {
b->weighted = 1;
}
if (argv[i][j] == 'W') {
b->weighted = 2;
}
if (argv[i][j] == 'j') {
b->jettison = 1;
}
if (argv[i][j] == 'z') {
b->firstnumber = 0;
}
if (argv[i][j] == 'e') {
b->edgesout = 1;
}
if (argv[i][j] == 'v') {
b->voronoi = 1;
}
if (argv[i][j] == 'n') {
b->neighbors = 1;
}
if (argv[i][j] == 'g') {
b->geomview = 1;
}
if (argv[i][j] == 'B') {
b->nobound = 1;
}
if (argv[i][j] == 'P') {
b->nopolywritten = 1;
}
if (argv[i][j] == 'N') {
b->nonodewritten = 1;
}
if (argv[i][j] == 'E') {
b->noelewritten = 1;
}
if (argv[i][j] == 'O') {
b->noholes = 1;
}
if (argv[i][j] == 'X') {
b->noexact = 1;
}
if (argv[i][j] == 'o') {
if (argv[i][j + 1] == '2') {
j++;
b->order = 2;
}
}
#ifndef CDT_ONLY
if (argv[i][j] == 'Y')
{
b->nobisect++;
}
if (argv[i][j] == 'S')
{
b->steiner = 0;
while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9'))
{
j++;
b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
}
}
#endif /* not CDT_ONLY */
#ifndef REDUCED
if (argv[i][j] == 'i')
{
b->incremental = 1;
}
if (argv[i][j] == 'F')
{
b->sweepline = 1;
}
#endif /* not REDUCED */
if (argv[i][j] == 'l') {
b->dwyer = 0;
}
#ifndef REDUCED
#ifndef CDT_ONLY
if (argv[i][j] == 's')
{
b->splitseg = 1;
}
if ((argv[i][j] == 'D') || (argv[i][j] == 'L'))
{
b->quality = 1;
b->conformdel = 1;
}
#endif /* not CDT_ONLY */
if (argv[i][j] == 'C')
{
b->docheck = 1;
}
#endif /* not REDUCED */
if (argv[i][j] == 'Q') {
b->quiet = 1;
}
if (argv[i][j] == 'V') {
b->verbose++;
}
}
}
b->usesegments = b->poly || b->refine || b->quality || b->convex;
b->goodangle = cos(b->minangle * PI / 180.0);
if (b->goodangle == 1.0) {
b->offconstant = 0.0;
}
else {
b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
}
b->goodangle *= b->goodangle;
if (b->refine && b->noiterationnum) {
printf( "Error: You cannot use the -I switch when refining a triangulation.\n");
triexit(1);
}
/* Be careful not to allocate space for element area constraints that */
/* will never be assigned any value (other than the default -1.0). */
if (!b->refine && !b->poly) {
b->vararea = 0;
}
/* Be careful not to add an extra attribute to each element unless the */
/* input supports it (PSLG in, but not refining a preexisting mesh). */
if (b->refine || !b->poly) {
b->regionattrib = 0;
}
/* Regular/weighted triangulations are incompatible with PSLGs */
/* and meshing. */
if (b->weighted && (b->poly || b->quality)) {
b->weighted = 0;
if (!b->quiet) {
printf("Warning: weighted triangulations (-w, -W) are incompatible\n");
printf(" with PSLGs (-p) and meshing (-q, -a, -u). Weights ignored.\n");
}
}
if (b->jettison && b->nonodewritten && !b->quiet) {
printf("Warning: -j and -N switches are somewhat incompatible.\n");
printf(" If any vertices are jettisoned, you will need the output\n");
printf(" .node file to reconstruct the new node indices.");
}
}
/** **/
/** **/
/********* User interaction routines begin here *********/
/********* Memory management routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* poolzero() Set all of a pool's fields to zero. */
/* */
/* This procedure should never be called on a pool that has any memory */
/* allocated to it, as that memory would leak. */
/* */
/*****************************************************************************/
void poolzero(struct memorypool *pool) {
pool->firstblock = (VOID **) NULL;
pool->nowblock = (VOID **) NULL;
pool->nextitem = (VOID *) NULL;
pool->deaditemstack = (VOID *) NULL;
pool->pathblock = (VOID **) NULL;
pool->pathitem = (VOID *) NULL;
pool->alignbytes = 0;
pool->itembytes = 0;
pool->itemsperblock = 0;
pool->itemsfirstblock = 0;
pool->items = 0;
pool->maxitems = 0;
pool->unallocateditems = 0;
pool->pathitemsleft = 0;
}
/*****************************************************************************/
/* */
/* poolrestart() Deallocate all items in a pool. */
/* */
/* The pool is returned to its starting state, except that no memory is */
/* freed to the operating system. Rather, the previously allocated blocks */
/* are ready to be reused. */
/* */
/*****************************************************************************/
void poolrestart(struct memorypool *pool) {
unsigned long alignptr;
pool->items = 0;
pool->maxitems = 0;
/* Set the currently active block. */
pool->nowblock = pool->firstblock;
/* Find the first item in the pool. Increment by the size of (VOID *). */
alignptr = (unsigned long) (pool->nowblock + 1);
/* Align the item on an `alignbytes'-byte boundary. */
pool->nextitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- (alignptr % (unsigned long) pool->alignbytes));
/* There are lots of unallocated items left in this block. */
pool->unallocateditems = pool->itemsfirstblock;
/* The stack of deallocated items is empty. */
pool->deaditemstack = (VOID *) NULL;
}
/*****************************************************************************/
/* */
/* poolinit() Initialize a pool of memory for allocation of items. */
/* */
/* This routine initializes the machinery for allocating items. A `pool' */
/* is created whose records have size at least `bytecount'. Items will be */
/* allocated in `itemcount'-item blocks. Each item is assumed to be a */
/* collection of words, and either pointers or floating-point values are */
/* assumed to be the "primary" word type. (The "primary" word type is used */
/* to determine alignment of items.) If `alignment' isn't zero, all items */
/* will be `alignment'-byte aligned in memory. `alignment' must be either */
/* a multiple or a factor of the primary word size; powers of two are safe. */
/* `alignment' is normally used to create a few unused bits at the bottom */
/* of each item's pointer, in which information may be stored. */
/* */
/* Don't change this routine unless you understand it. */
/* */
/*****************************************************************************/
void poolinit(struct memorypool *pool, int bytecount, int itemcount, int firstitemcount,
int alignment) {
/* Find the proper alignment, which must be at least as large as: */
/* - The parameter `alignment'. */
/* - sizeof(VOID *), so the stack of dead items can be maintained */
/* without unaligned accesses. */
if (alignment > sizeof(VOID *)) {
pool->alignbytes = alignment;
}
else {
pool->alignbytes = sizeof(VOID *);
}
pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) * pool->alignbytes;
pool->itemsperblock = itemcount;
if (firstitemcount == 0) {
pool->itemsfirstblock = itemcount;
}
else {
pool->itemsfirstblock = firstitemcount;
}
/* Allocate a block of items. Space for `itemsfirstblock' items and one */
/* pointer (to point to the next block) are allocated, as well as space */
/* to ensure alignment of the items. */
pool->firstblock = (VOID **) trimalloc(
pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) + pool->alignbytes);
/* Set the next block pointer to NULL. */
*(pool->firstblock) = (VOID *) NULL;
poolrestart(pool);
}
/*****************************************************************************/
/* */
/* pooldeinit() Free to the operating system all memory taken by a pool. */
/* */
/*****************************************************************************/
void pooldeinit(struct memorypool *pool) {
while (pool->firstblock != (VOID **) NULL) {
pool->nowblock = (VOID **) *(pool->firstblock);
trifree((VOID *) pool->firstblock);
pool->firstblock = pool->nowblock;
}
}
/*****************************************************************************/
/* */
/* poolalloc() Allocate space for an item. */
/* */
/*****************************************************************************/
VOID *poolalloc(struct memorypool *pool) {
VOID *newitem;
VOID **newblock;
unsigned long alignptr;
/* First check the linked list of dead items. If the list is not */
/* empty, allocate an item from the list rather than a fresh one. */
if (pool->deaditemstack != (VOID *) NULL) {
newitem = pool->deaditemstack; /* Take first item in list. */
pool->deaditemstack = *(VOID **) pool->deaditemstack;
}
else {
/* Check if there are any free items left in the current block. */
if (pool->unallocateditems == 0) {
/* Check if another block must be allocated. */
if (*(pool->nowblock) == (VOID *) NULL) {
/* Allocate a new block of items, pointed to by the previous block. */
newblock = (VOID **) trimalloc(
pool->itemsperblock * pool->itembytes + (int) sizeof(VOID *) + pool->alignbytes);
*(pool->nowblock) = (VOID *) newblock;
/* The next block pointer is NULL. */
*newblock = (VOID *) NULL;
}
/* Move to the new block. */
pool->nowblock = (VOID **) *(pool->nowblock);
/* Find the first item in the block. */
/* Increment by the size of (VOID *). */
alignptr = (unsigned long) (pool->nowblock + 1);
/* Align the item on an `alignbytes'-byte boundary. */
pool->nextitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- (alignptr % (unsigned long) pool->alignbytes));
/* There are lots of unallocated items left in this block. */
pool->unallocateditems = pool->itemsperblock;
}
/* Allocate a new item. */
newitem = pool->nextitem;
/* Advance `nextitem' pointer to next free item in block. */
pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);
pool->unallocateditems--;
pool->maxitems++;
}
pool->items++;
return newitem;
}
/*****************************************************************************/
/* */
/* pooldealloc() Deallocate space for an item. */
/* */
/* The deallocated space is stored in a queue for later reuse. */
/* */
/*****************************************************************************/
void pooldealloc(struct memorypool *pool, VOID *dyingitem) {
/* Push freshly killed item onto stack. */
*((VOID **) dyingitem) = pool->deaditemstack;
pool->deaditemstack = dyingitem;
pool->items--;
}
/*****************************************************************************/
/* */
/* traversalinit() Prepare to traverse the entire list of items. */
/* */
/* This routine is used in conjunction with traverse(). */
/* */
/*****************************************************************************/
void traversalinit(struct memorypool *pool) {
unsigned long alignptr;
/* Begin the traversal in the first block. */
pool->pathblock = pool->firstblock;
/* Find the first item in the block. Increment by the size of (VOID *). */
alignptr = (unsigned long) (pool->pathblock + 1);
/* Align with item on an `alignbytes'-byte boundary. */
pool->pathitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- (alignptr % (unsigned long) pool->alignbytes));
/* Set the number of items left in the current block. */
pool->pathitemsleft = pool->itemsfirstblock;
}
/*****************************************************************************/
/* */
/* traverse() Find the next item in the list. */
/* */
/* This routine is used in conjunction with traversalinit(). Be forewarned */
/* that this routine successively returns all items in the list, including */
/* deallocated ones on the deaditemqueue. It's up to you to figure out */
/* which ones are actually dead. Why? I don't want to allocate extra */
/* space just to demarcate dead items. It can usually be done more */
/* space-efficiently by a routine that knows something about the structure */
/* of the item. */
/* */
/*****************************************************************************/
VOID *traverse(struct memorypool *pool) {
VOID *newitem;
unsigned long alignptr;
/* Stop upon exhausting the list of items. */
if (pool->pathitem == pool->nextitem) {
return (VOID *) NULL;
}
/* Check whether any untraversed items remain in the current block. */
if (pool->pathitemsleft == 0) {
/* Find the next block. */
pool->pathblock = (VOID **) *(pool->pathblock);
/* Find the first item in the block. Increment by the size of (VOID *). */
alignptr = (unsigned long) (pool->pathblock + 1);
/* Align with item on an `alignbytes'-byte boundary. */
pool->pathitem = (VOID *) (alignptr + (unsigned long) pool->alignbytes
- (alignptr % (unsigned long) pool->alignbytes));
/* Set the number of items left in the current block. */
pool->pathitemsleft = pool->itemsperblock;
}
newitem = pool->pathitem;
/* Find the next item in the block. */
pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);
pool->pathitemsleft--;
return newitem;
}
/*****************************************************************************/
/* */
/* dummyinit() Initialize the triangle that fills "outer space" and the */
/* omnipresent subsegment. */
/* */
/* The triangle that fills "outer space," called `dummytri', is pointed to */
/* by every triangle and subsegment on a boundary (be it outer or inner) of */
/* the triangulation. Also, `dummytri' points to one of the triangles on */
/* the convex hull (until the holes and concavities are carved), making it */
/* possible to find a starting triangle for point location. */
/* */
/* The omnipresent subsegment, `dummysub', is pointed to by every triangle */
/* or subsegment that doesn't have a full complement of real subsegments */
/* to point to. */
/* */
/* `dummytri' and `dummysub' are generally required to fulfill only a few */
/* invariants: their vertices must remain NULL and `dummytri' must always */
/* be bonded (at offset zero) to some triangle on the convex hull of the */
/* mesh, via a boundary edge. Otherwise, the connections of `dummytri' and */
/* `dummysub' may change willy-nilly. This makes it possible to avoid */
/* writing a good deal of special-case code (in the edge flip, for example) */
/* for dealing with the boundary of the mesh, places where no subsegment is */
/* present, and so forth. Other entities are frequently bonded to */
/* `dummytri' and `dummysub' as if they were real mesh entities, with no */
/* harm done. */
/* */
/*****************************************************************************/
void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes, int subsegbytes) {
unsigned long alignptr;
/* Set up `dummytri', the `triangle' that occupies "outer space." */
m->dummytribase = (triangle *) trimalloc(trianglebytes + m->triangles.alignbytes);
/* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
alignptr = (unsigned long) m->dummytribase;
m->dummytri = (triangle *) (alignptr + (unsigned long) m->triangles.alignbytes
- (alignptr % (unsigned long) m->triangles.alignbytes));
/* Initialize the three adjoining triangles to be "outer space." These */
/* will eventually be changed by various bonding operations, but their */
/* values don't really matter, as long as they can legally be */
/* dereferenced. */
m->dummytri[0] = (triangle) m->dummytri;
m->dummytri[1] = (triangle) m->dummytri;
m->dummytri[2] = (triangle) m->dummytri;
/* Three NULL vertices. */
m->dummytri[3] = (triangle) NULL;
m->dummytri[4] = (triangle) NULL;
m->dummytri[5] = (triangle) NULL;
if (b->usesegments) {
/* Set up `dummysub', the omnipresent subsegment pointed to by any */
/* triangle side or subsegment end that isn't attached to a real */
/* subsegment. */
m->dummysubbase = (subseg *) trimalloc(subsegbytes + m->subsegs.alignbytes);
/* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
alignptr = (unsigned long) m->dummysubbase;
m->dummysub = (subseg *) (alignptr + (unsigned long) m->subsegs.alignbytes
- (alignptr % (unsigned long) m->subsegs.alignbytes));
/* Initialize the two adjoining subsegments to be the omnipresent */
/* subsegment. These will eventually be changed by various bonding */
/* operations, but their values don't really matter, as long as they */
/* can legally be dereferenced. */
m->dummysub[0] = (subseg) m->dummysub;
m->dummysub[1] = (subseg) m->dummysub;
/* Four NULL vertices. */
m->dummysub[2] = (subseg) NULL;
m->dummysub[3] = (subseg) NULL;
m->dummysub[4] = (subseg) NULL;
m->dummysub[5] = (subseg) NULL;
/* Initialize the two adjoining triangles to be "outer space." */
m->dummysub[6] = (subseg) m->dummytri;
m->dummysub[7] = (subseg) m->dummytri;
/* Set the boundary marker to zero. */
*(int *) (m->dummysub + 8) = 0;
/* Initialize the three adjoining subsegments of `dummytri' to be */
/* the omnipresent subsegment. */
m->dummytri[6] = (triangle) m->dummysub;
m->dummytri[7] = (triangle) m->dummysub;
m->dummytri[8] = (triangle) m->dummysub;
}
}
/*****************************************************************************/
/* */
/* initializevertexpool() Calculate the size of the vertex data structure */
/* and initialize its memory pool. */
/* */
/* This routine also computes the `vertexmarkindex' and `vertex2triindex' */
/* indices used to find values within each vertex. */
/* */
/*****************************************************************************/
void initializevertexpool(struct mesh *m, struct behavior *b) {
int vertexsize;
/* The index within each vertex at which the boundary marker is found, */
/* followed by the vertex type. Ensure the vertex marker is aligned to */
/* a sizeof(int)-byte address. */
m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) + sizeof(int) - 1) / sizeof(int);
vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
if (b->poly) {
/* The index within each vertex at which a triangle pointer is found. */
/* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) / sizeof(triangle);
vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
}
/* Initialize the pool of vertices. */
poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
sizeof(REAL));
}
/*****************************************************************************/
/* */
/* initializetrisubpools() Calculate the sizes of the triangle and */
/* subsegment data structures and initialize */
/* their memory pools. */
/* */
/* This routine also computes the `highorderindex', `elemattribindex', and */
/* `areaboundindex' indices used to find values within each triangle. */
/* */
/*****************************************************************************/
void initializetrisubpools(struct mesh *m, struct behavior *b) {
int trisize;
/* The index within each triangle at which the extra nodes (above three) */
/* associated with high order elements are found. There are three */
/* pointers to other triangles, three pointers to corners, and possibly */
/* three pointers to subsegments before the extra nodes. */
m->highorderindex = 6 + (b->usesegments * 3);
/* The number of bytes occupied by a triangle. */
trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) * sizeof(triangle);
/* The index within each triangle at which its attributes are found, */
/* where the index is measured in REALs. */
m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
/* The index within each triangle at which the maximum area constraint */
/* is found, where the index is measured in REALs. Note that if the */
/* `regionattrib' flag is set, an additional attribute will be added. */
m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
/* If triangle attributes or an area bound are needed, increase the number */
/* of bytes occupied by a triangle. */
if (b->vararea) {
trisize = (m->areaboundindex + 1) * sizeof(REAL);
}
else if (m->eextras + b->regionattrib > 0) {
trisize = m->areaboundindex * sizeof(REAL);
}
/* If a Voronoi diagram or triangle neighbor graph is requested, make */
/* sure there's room to store an integer index in each triangle. This */
/* integer index can occupy the same space as the subsegment pointers */
/* or attributes or area constraint or extra nodes. */
if ((b->voronoi || b->neighbors) && (trisize < 6 * sizeof(triangle) + sizeof(int))) {
trisize = 6 * sizeof(triangle) + sizeof(int);
}
/* Having determined the memory size of a triangle, initialize the pool. */
poolinit(&m->triangles, trisize, TRIPERBLOCK,
(2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) : TRIPERBLOCK, 4);
if (b->usesegments) {
/* Initialize the pool of subsegments. Take into account all eight */
/* pointers and one boundary marker. */
poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int), SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
/* Initialize the "outer space" triangle and omnipresent subsegment. */
dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
}
else {
/* Initialize the "outer space" triangle. */
dummyinit(m, b, m->triangles.itembytes, 0);
}
}
/*****************************************************************************/
/* */
/* triangledealloc() Deallocate space for a triangle, marking it dead. */
/* */
/*****************************************************************************/
void triangledealloc(struct mesh *m, triangle *dyingtriangle) {
/* Mark the triangle as dead. This makes it possible to detect dead */
/* triangles when traversing the list of all triangles. */
killtri(dyingtriangle);
pooldealloc(&m->triangles, (VOID *) dyingtriangle);
}
/*****************************************************************************/
/* */
/* triangletraverse() Traverse the triangles, skipping dead ones. */
/* */
/*****************************************************************************/
triangle *triangletraverse(struct mesh *m) {
triangle *newtriangle;
do {
newtriangle = (triangle *) traverse(&m->triangles);
if (newtriangle == (triangle *) NULL) {
return (triangle *) NULL;
}
} while (deadtri(newtriangle)); /* Skip dead ones. */
return newtriangle;
}
/*****************************************************************************/
/* */
/* subsegdealloc() Deallocate space for a subsegment, marking it dead. */
/* */
/*****************************************************************************/
void subsegdealloc(struct mesh *m, subseg *dyingsubseg) {
/* Mark the subsegment as dead. This makes it possible to detect dead */
/* subsegments when traversing the list of all subsegments. */
killsubseg(dyingsubseg);
pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
}
/*****************************************************************************/
/* */
/* subsegtraverse() Traverse the subsegments, skipping dead ones. */
/* */
/*****************************************************************************/
subseg *subsegtraverse(struct mesh *m) {
subseg *newsubseg;
do {
newsubseg = (subseg *) traverse(&m->subsegs);
if (newsubseg == (subseg *) NULL) {
return (subseg *) NULL;
}
} while (deadsubseg(newsubseg)); /* Skip dead ones. */
return newsubseg;
}
/*****************************************************************************/
/* */
/* vertexdealloc() Deallocate space for a vertex, marking it dead. */
/* */
/*****************************************************************************/
void vertexdealloc(struct mesh *m, vertex dyingvertex) {
/* Mark the vertex as dead. This makes it possible to detect dead */
/* vertices when traversing the list of all vertices. */
setvertextype(dyingvertex, DEADVERTEX);
pooldealloc(&m->vertices, (VOID *) dyingvertex);
}
/*****************************************************************************/
/* */
/* vertextraverse() Traverse the vertices, skipping dead ones. */
/* */
/*****************************************************************************/
vertex vertextraverse(struct mesh *m) {
vertex newvertex;
do {
newvertex = (vertex) traverse(&m->vertices);
if (newvertex == (vertex) NULL) {
return (vertex) NULL;
}
} while (vertextype(newvertex) == DEADVERTEX); /* Skip dead ones. */
return newvertex;
}
/*****************************************************************************/
/* */
/* getvertex() Get a specific vertex, by number, from the list. */
/* */
/* The first vertex is number 'firstnumber'. */
/* */
/* Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
/* is large). I don't care to take the trouble to make it work in constant */
/* time. */
/* */
/*****************************************************************************/
vertex getvertex(struct mesh *m, struct behavior *b, int number) {
VOID **getblock;
char *foundvertex;
unsigned long alignptr;
int current;
getblock = m->vertices.firstblock;
current = b->firstnumber;
/* Find the right block. */
if (current + m->vertices.itemsfirstblock <= number) {
getblock = (VOID **) *getblock;
current += m->vertices.itemsfirstblock;
while (current + m->vertices.itemsperblock <= number) {
getblock = (VOID **) *getblock;
current += m->vertices.itemsperblock;
}
}
/* Now find the right vertex. */
alignptr = (unsigned long) (getblock + 1);
foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes
- (alignptr % (unsigned long) m->vertices.alignbytes));
return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
}
/*****************************************************************************/
/* */
/* triangledeinit() Free all remaining allocated memory. */
/* */
/*****************************************************************************/
void triangledeinit(struct mesh *m, struct behavior *b) {
pooldeinit(&m->triangles);
trifree((VOID *) m->dummytribase);
if (b->usesegments) {
pooldeinit(&m->subsegs);
trifree((VOID *) m->dummysubbase);
}
pooldeinit(&m->vertices);
#ifndef CDT_ONLY
if (b->quality)
{
pooldeinit(&m->badsubsegs);
if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest)
{
pooldeinit(&m->badtriangles);
pooldeinit(&m->flipstackers);
}
}
#endif /* not CDT_ONLY */
}
/** **/
/** **/
/********* Memory management routines end here *********/
/********* Constructors begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* maketriangle() Create a new triangle with orientation zero. */
/* */
/*****************************************************************************/
void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri) {
int i;
newotri->tri = (triangle *) poolalloc(&m->triangles);
/* Initialize the three adjoining triangles to be "outer space". */
newotri->tri[0] = (triangle) m->dummytri;
newotri->tri[1] = (triangle) m->dummytri;
newotri->tri[2] = (triangle) m->dummytri;
/* Three NULL vertices. */
newotri->tri[3] = (triangle) NULL;
newotri->tri[4] = (triangle) NULL;
newotri->tri[5] = (triangle) NULL;
if (b->usesegments) {
/* Initialize the three adjoining subsegments to be the omnipresent */
/* subsegment. */
newotri->tri[6] = (triangle) m->dummysub;
newotri->tri[7] = (triangle) m->dummysub;
newotri->tri[8] = (triangle) m->dummysub;
}
for (i = 0; i < m->eextras; i++) {
setelemattribute(*newotri, i, 0.0);
}
if (b->vararea) {
setareabound(*newotri, -1.0);
}
newotri->orient = 0;
}
/*****************************************************************************/
/* */
/* makesubseg() Create a new subsegment with orientation zero. */
/* */
/*****************************************************************************/
void makesubseg(struct mesh *m, struct osub *newsubseg) {
newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
/* Initialize the two adjoining subsegments to be the omnipresent */
/* subsegment. */
newsubseg->ss[0] = (subseg) m->dummysub;
newsubseg->ss[1] = (subseg) m->dummysub;
/* Four NULL vertices. */
newsubseg->ss[2] = (subseg) NULL;
newsubseg->ss[3] = (subseg) NULL;
newsubseg->ss[4] = (subseg) NULL;
newsubseg->ss[5] = (subseg) NULL;
/* Initialize the two adjoining triangles to be "outer space." */
newsubseg->ss[6] = (subseg) m->dummytri;
newsubseg->ss[7] = (subseg) m->dummytri;
/* Set the boundary marker to zero. */
setmark(*newsubseg, 0);
newsubseg->ssorient = 0;
}
/** **/
/** **/
/********* Constructors end here *********/
/********* Geometric primitives begin here *********/
/** **/
/** **/
/* The adaptive exact arithmetic geometric predicates implemented herein are */
/* described in detail in my paper, "Adaptive Precision Floating-Point */
/* Arithmetic and Fast Robust Geometric Predicates." See the header for a */
/* full citation. */
/* Which of the following two methods of finding the absolute values is */
/* fastest is compiler-dependent. A few compilers can inline and optimize */
/* the fabs() call; but most will incur the overhead of a function call, */
/* which is disastrously slow. A faster way on IEEE machines might be to */
/* mask the appropriate bit, but that's difficult to do in C without */
/* forcing the value to be stored to memory (rather than be kept in the */
/* register to which the optimizer assigned it). */
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
/* #define Absolute(a) fabs(a) */
/* Many of the operations are broken up into two pieces, a main part that */
/* performs an approximate operation, and a "tail" that computes the */
/* roundoff error of that operation. */
/* */
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
/* Split(), and Two_Product() are all implemented as described in the */
/* reference. Each of these macros requires certain variables to be */
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `' because */
/* they store the result of an operation that may incur roundoff error. */
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
/* also be declared `'. */
#define Fast_Two_Sum_Tail(a, b, x, y) \
bvirt = x - a; \
y = b - bvirt
#define Fast_Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Fast_Two_Sum_Tail(a, b, x, y)
#define Two_Sum_Tail(a, b, x, y) \
bvirt = (REAL) (x - a); \
avirt = x - bvirt; \
bround = b - bvirt; \
around = a - avirt; \
y = around + bround
#define Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Two_Sum_Tail(a, b, x, y)
#define Two_Diff_Tail(a, b, x, y) \
bvirt = (REAL) (a - x); \
avirt = x + bvirt; \
bround = bvirt - b; \
around = a - avirt; \
y = around + bround
#define Two_Diff(a, b, x, y) \
x = (REAL) (a - b); \
Two_Diff_Tail(a, b, x, y)
#define Split(a, ahi, alo) \
c = (REAL) (splitter * a); \
abig = (REAL) (c - a); \
ahi = c - abig; \
alo = a - ahi
#define Two_Product_Tail(a, b, x, y) \
Split(a, ahi, alo); \
Split(b, bhi, blo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
#define Two_Product(a, b, x, y) \
x = (REAL) (a * b); \
Two_Product_Tail(a, b, x, y)
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
/* already been split. Avoids redundant splitting. */
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
x = (REAL) (a * b); \
Split(a, ahi, alo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
/* Square() can be done more quickly than Two_Product(). */
#define Square_Tail(a, x, y) \
Split(a, ahi, alo); \
err1 = x - (ahi * ahi); \
err3 = err1 - ((ahi + ahi) * alo); \
y = (alo * alo) - err3
#define Square(a, x, y) \
x = (REAL) (a * a); \
Square_Tail(a, x, y)
/* Macros for summing expansions of various fixed lengths. These are all */
/* unrolled versions of Expansion_Sum(). */
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
Two_Sum(a0, b , _i, x0); \
Two_Sum(a1, _i, x2, x1)
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
Two_Diff(a0, b , _i, x0); \
Two_Sum( a1, _i, x2, x1)
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
Two_One_Sum(_j, _0, b1, x3, x2, x1)
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
Two_One_Diff(_j, _0, b1, x3, x2, x1)
/* Macro for multiplying a two-component expansion by a single component. */
#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
Split(b, bhi, blo); \
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
Two_Sum(_i, _0, _k, x1); \
Fast_Two_Sum(_j, _k, x3, x2)
/*****************************************************************************/
/* */
/* exactinit() Initialize the variables used for exact arithmetic. */
/* */
/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
/* error. It is used for floating-point error analysis. */
/* */
/* `splitter' is used to split floating-point numbers into two half- */
/* length significands for exact multiplication. */
/* */
/* I imagine that a highly optimizing compiler might be too smart for its */
/* own good, and somehow cause this routine to fail, if it pretends that */
/* floating-point arithmetic is too much like real arithmetic. */
/* */
/* Don't change this routine unless you fully understand it. */
/* */
/*****************************************************************************/
void exactinit() {
REAL half;
REAL check, lastcheck;
int every_other;
#ifdef LINUX
int cword;
#endif /* LINUX */
#ifdef CPU86
#ifdef SINGLE
_control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
#else /* not SINGLE */
_control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
#endif /* not SINGLE */
#endif /* CPU86 */
#ifdef LINUX
#ifdef SINGLE
/* cword = 4223; */
cword = 4210; /* set FPU control word for single precision */
#else /* not SINGLE */
/* cword = 4735; */
cword = 4722; /* set FPU control word for double precision */
#endif /* not SINGLE */
_FPU_SETCW(cword);
#endif /* LINUX */
every_other = 1;
half = 0.5;
epsilon = 1.0;
splitter = 1.0;
check = 1.0;
/* Repeatedly divide `epsilon' by two until it is too small to add to */
/* one without causing roundoff. (Also check if the sum is equal to */
/* the previous sum, for machines that round up instead of using exact */
/* rounding. Not that these routines will work on such machines.) */
do {
lastcheck = check;
epsilon *= half;
if (every_other) {
splitter *= 2.0;
}
every_other = !every_other;
check = 1.0 + epsilon;
} while ((check != 1.0) && (check != lastcheck));
splitter += 1.0;
/* Error bounds for orientation and incircle tests. */
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
}
/*****************************************************************************/
/* */
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
/* components from the output expansion. */
/* */
/* Sets h = e + f. See my Robust Predicates paper for details. */
/* */
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
/* properties. */
/* */
/*****************************************************************************/
int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h) {
REAL Q;
REAL Qnew;
REAL hh;
REAL bvirt;
REAL avirt, bround, around;
int eindex, findex, hindex;
REAL enow, fnow;
enow = e[0];
fnow = f[0];
eindex = findex = 0;
if ((fnow > enow) == (fnow > -enow)) {
Q = enow;
enow = e[++eindex];
}
else {
Q = fnow;
fnow = f[++findex];
}
hindex = 0;
if ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Fast_Two_Sum(enow, Q, Qnew, hh);
enow = e[++eindex];
}
else {
Fast_Two_Sum(fnow, Q, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
while ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
}
else {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
}
while (eindex < elen) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
while (findex < flen) {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0)) {
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
/* eliminating zero components from the */
/* output expansion. */
/* */
/* Sets h = be. See my Robust Predicates paper for details. */
/* */
/* Maintains the nonoverlapping property. If round-to-even is used (as */
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
/* properties as well. (That is, if e has one of these properties, so */
/* will h.) */
/* */
/*****************************************************************************/
int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) {
REAL Q, sum;
REAL hh;
REAL product1;
REAL product0;
int eindex, hindex;
REAL enow;
REAL bvirt;
REAL avirt, bround, around;
REAL c;
REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
Split(b, bhi, blo);
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
hindex = 0;
if (hh != 0) {
h[hindex++] = hh;
}
for (eindex = 1; eindex < elen; eindex++) {
enow = e[eindex];
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
Two_Sum(Q, product0, sum, hh);
if (hh != 0) {
h[hindex++] = hh;
}
Fast_Two_Sum(product1, sum, Q, hh);
if (hh != 0) {
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0)) {
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* estimate() Produce a one-word estimate of an expansion's value. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL estimate(int elen, REAL *e) {
REAL Q;
int eindex;
Q = e[0];
for (eindex = 1; eindex < elen; eindex++) {
Q += e[eindex];
}
return Q;
}
/*****************************************************************************/
/* */
/* counterclockwise() Return a positive value if the points pa, pb, and */
/* pc occur in counterclockwise order; a negative */
/* value if they occur in clockwise order; and zero */
/* if they are collinear. The result is also a rough */
/* approximation of twice the signed area of the */
/* triangle defined by the three points. */
/* */
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
/* result returned is the determinant of a matrix. This determinant is */
/* computed adaptively, in the sense that exact arithmetic is used only to */
/* the degree it is needed to ensure that the returned value has the */
/* correct sign. Hence, this function is usually quite fast, but will run */
/* more slowly when the input points are collinear or nearly so. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum) {
REAL acx, acy, bcx, bcy;
REAL acxtail, acytail, bcxtail, bcytail;
REAL detleft, detright;
REAL detlefttail, detrighttail;
REAL det, errbound;
REAL B[4], C1[8], C2[12], D[16];
REAL B3;
int C1length, C2length, Dlength;
REAL u[4];
REAL u3;
REAL s1, t1;
REAL s0, t0;
REAL bvirt;
REAL avirt, bround, around;
REAL c;
REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
REAL _i, _j;
REAL _0;
acx = (REAL) (pa[0] - pc[0]);
bcx = (REAL) (pb[0] - pc[0]);
acy = (REAL) (pa[1] - pc[1]);
bcy = (REAL) (pb[1] - pc[1]);
Two_Product(acx, bcy, detleft, detlefttail);
Two_Product(acy, bcx, detright, detrighttail);
Two_Two_Diff(detleft, detlefttail, detright, detrighttail, B3, B[2], B[1], B[0]);
B[3] = B3;
det = estimate(4, B);
errbound = ccwerrboundB * detsum;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
Two_Diff_Tail(pa[1], pc[1], acy, acytail);
Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
if ((acxtail == 0.0) && (acytail == 0.0) && (bcxtail == 0.0) && (bcytail == 0.0)) {
return det;
}
errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Product(acxtail, bcy, s1, s0);
Two_Product(acytail, bcx, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
Two_Product(acx, bcytail, s1, s0);
Two_Product(acy, bcxtail, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
Two_Product(acxtail, bcytail, s1, s0);
Two_Product(acytail, bcxtail, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
return (D[Dlength - 1]);
}
REAL counterclockwise(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc) {
REAL detleft, detright, det;
REAL detsum, errbound;
m->counterclockcount++;
detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
det = detleft - detright;
if (b->noexact) {
return det;
}
if (detleft > 0.0) {
if (detright <= 0.0) {
return det;
}
else {
detsum = detleft + detright;
}
}
else if (detleft < 0.0) {
if (detright >= 0.0) {
return det;
}
else {
detsum = -detleft - detright;
}
}
else {
return det;
}
errbound = ccwerrboundA * detsum;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
return counterclockwiseadapt(pa, pb, pc, detsum);
}
/*****************************************************************************/
/* */
/* incircle() Return a positive value if the point pd lies inside the */
/* circle passing through pa, pb, and pc; a negative value if */
/* it lies outside; and zero if the four points are cocircular.*/
/* The points pa, pb, and pc must be in counterclockwise */
/* order, or the sign of the result will be reversed. */
/* */
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
/* result returned is the determinant of a matrix. This determinant is */
/* computed adaptively, in the sense that exact arithmetic is used only to */
/* the degree it is needed to ensure that the returned value has the */
/* correct sign. Hence, this function is usually quite fast, but will run */
/* more slowly when the input points are cocircular or nearly so. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent) {
REAL adx, bdx, cdx, ady, bdy, cdy;
REAL det, errbound;
REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
REAL bc[4], ca[4], ab[4];
REAL bc3, ca3, ab3;
REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
int axbclen, axxbclen, aybclen, ayybclen, alen;
REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
int bxcalen, bxxcalen, bycalen, byycalen, blen;
REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
int cxablen, cxxablen, cyablen, cyyablen, clen;
REAL abdet[64];
int ablen;
REAL fin1[1152], fin2[1152];
REAL *finnow, *finother, *finswap;
int finlength;
REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
REAL aa[4], bb[4], cc[4];
REAL aa3, bb3, cc3;
REAL ti1, tj1;
REAL ti0, tj0;
REAL u[4], v[4];
REAL u3, v3;
REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
int temp8len, temp16alen, temp16blen, temp16clen;
int temp32alen, temp32blen, temp48len, temp64len;
REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
int axtbblen, axtcclen, aytbblen, aytcclen;
REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
int bxtaalen, bxtcclen, bytaalen, bytcclen;
REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
int cxtaalen, cxtbblen, cytaalen, cytbblen;
REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
REAL axtbctt[8], aytbctt[8], bxtcatt[8];
REAL bytcatt[8], cxtabtt[8], cytabtt[8];
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
REAL abt[8], bct[8], cat[8];
int abtlen, bctlen, catlen;
REAL abtt[4], bctt[4], catt[4];
int abttlen, bcttlen, cattlen;
REAL abtt3, bctt3, catt3;
REAL negate;
REAL bvirt;
REAL avirt, bround, around;
REAL c;
REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
REAL _i, _j;
REAL _0;
adx = (REAL) (pa[0] - pd[0]);
bdx = (REAL) (pb[0] - pd[0]);
cdx = (REAL) (pc[0] - pd[0]);
ady = (REAL) (pa[1] - pd[1]);
bdy = (REAL) (pb[1] - pd[1]);
cdy = (REAL) (pc[1] - pd[1]);
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
bc[3] = bc3;
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
Two_Product(cdx, ady, cdxady1, cdxady0);
Two_Product(adx, cdy, adxcdy1, adxcdy0);
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
ca[3] = ca3;
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
Two_Product(adx, bdy, adxbdy1, adxbdy0);
Two_Product(bdx, ady, bdxady1, bdxady0);
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
ab[3] = ab3;
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
det = estimate(finlength, fin1);
errbound = iccerrboundB * permanent;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0)
&& (bdytail == 0.0) && (cdytail == 0.0)) {
return det;
}
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
det += ((adx * adx + ady * ady)
* ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail))
+ 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+ ((bdx * bdx + bdy * bdy)
* ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail))
+ 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+ ((cdx * cdx + cdy * cdy)
* ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail))
+ 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
finnow = fin1;
finother = fin2;
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
Square(adx, adxadx1, adxadx0);
Square(ady, adyady1, adyady0);
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
aa[3] = aa3;
}
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
Square(bdx, bdxbdx1, bdxbdx0);
Square(bdy, bdybdy1, bdybdy0);
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
bb[3] = bb3;
}
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
Square(cdx, cdxcdx1, cdxcdx0);
Square(cdy, cdycdy1, cdycdy0);
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
cc[3] = cc3;
}
if (adxtail != 0.0) {
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (adytail != 0.0) {
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdxtail != 0.0) {
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdytail != 0.0) {
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdxtail != 0.0) {
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdytail != 0.0) {
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if ((adxtail != 0.0) || (adytail != 0.0)) {
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
Two_Product(bdxtail, cdy, ti1, ti0);
Two_Product(bdx, cdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -bdy;
Two_Product(cdxtail, negate, ti1, ti0);
negate = -bdytail;
Two_Product(cdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
Two_Product(bdxtail, cdytail, ti1, ti0);
Two_Product(cdxtail, bdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
bctt[3] = bctt3;
bcttlen = 4;
}
else {
bct[0] = 0.0;
bctlen = 1;
bctt[0] = 0.0;
bcttlen = 1;
}
if (adxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (bdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (adytail != 0.0) {
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if ((bdxtail != 0.0) || (bdytail != 0.0)) {
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
Two_Product(cdxtail, ady, ti1, ti0);
Two_Product(cdx, adytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -cdy;
Two_Product(adxtail, negate, ti1, ti0);
negate = -cdytail;
Two_Product(adx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
Two_Product(cdxtail, adytail, ti1, ti0);
Two_Product(adxtail, cdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
catt[3] = catt3;
cattlen = 4;
}
else {
cat[0] = 0.0;
catlen = 1;
catt[0] = 0.0;
cattlen = 1;
}
if (bdxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (cdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (adytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdytail != 0.0) {
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if ((cdxtail != 0.0) || (cdytail != 0.0)) {
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
Two_Product(adxtail, bdy, ti1, ti0);
Two_Product(adx, bdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -ady;
Two_Product(bdxtail, negate, ti1, ti0);
negate = -adytail;
Two_Product(bdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
Two_Product(adxtail, bdytail, ti1, ti0);
Two_Product(bdxtail, adytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
abtt[3] = abtt3;
abttlen = 4;
}
else {
abt[0] = 0.0;
abtlen = 1;
abtt[0] = 0.0;
abttlen = 1;
}
if (cdxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (adytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a,
finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdytail != 0.0) {
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b,
temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
return finnow[finlength - 1];
}
REAL incircle(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd) {
REAL adx, bdx, cdx, ady, bdy, cdy;
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
REAL alift, blift, clift;
REAL det;
REAL permanent, errbound;
m->incirclecount++;
adx = pa[0] - pd[0];
bdx = pb[0] - pd[0];
cdx = pc[0] - pd[0];
ady = pa[1] - pd[1];
bdy = pb[1] - pd[1];
cdy = pc[1] - pd[1];
bdxcdy = bdx * cdy;
cdxbdy = cdx * bdy;
alift = adx * adx + ady * ady;
cdxady = cdx * ady;
adxcdy = adx * cdy;
blift = bdx * bdx + bdy * bdy;
adxbdy = adx * bdy;
bdxady = bdx * ady;
clift = cdx * cdx + cdy * cdy;
det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady);
if (b->noexact) {
return det;
}
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+ (Absolute(cdxady) + Absolute(adxcdy)) * blift
+ (Absolute(adxbdy) + Absolute(bdxady)) * clift;
errbound = iccerrboundA * permanent;
if ((det > errbound) || (-det > errbound)) {
return det;
}
return incircleadapt(pa, pb, pc, pd, permanent);
}
/*****************************************************************************/
/* */
/* orient3d() Return a positive value if the point pd lies below the */
/* plane passing through pa, pb, and pc; "below" is defined so */
/* that pa, pb, and pc appear in counterclockwise order when */
/* viewed from above the plane. Returns a negative value if */
/* pd lies above the plane. Returns zero if the points are */
/* coplanar. The result is also a rough approximation of six */
/* times the signed volume of the tetrahedron defined by the */
/* four points. */
/* */
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
/* result returned is the determinant of a matrix. This determinant is */
/* computed adaptively, in the sense that exact arithmetic is used only to */
/* the degree it is needed to ensure that the returned value has the */
/* correct sign. Hence, this function is usually quite fast, but will run */
/* more slowly when the input points are coplanar or nearly so. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL aheight, REAL bheight,
REAL cheight, REAL dheight, REAL permanent) {
REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
REAL det, errbound;
REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
REAL bc[4], ca[4], ab[4];
REAL bc3, ca3, ab3;
REAL adet[8], bdet[8], cdet[8];
int alen, blen, clen;
REAL abdet[16];
int ablen;
REAL *finnow, *finother, *finswap;
REAL fin1[192], fin2[192];
int finlength;
REAL adxtail, bdxtail, cdxtail;
REAL adytail, bdytail, cdytail;
REAL adheighttail, bdheighttail, cdheighttail;
REAL at_blarge, at_clarge;
REAL bt_clarge, bt_alarge;
REAL ct_alarge, ct_blarge;
REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
REAL bct[8], cat[8], abt[8];
int bctlen, catlen, abtlen;
REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
REAL u[4], v[12], w[16];
REAL u3;
int vlength, wlength;
REAL negate;
REAL bvirt;
REAL avirt, bround, around;
REAL c;
REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
REAL _i, _j, _k;
REAL _0;
adx = (REAL) (pa[0] - pd[0]);
bdx = (REAL) (pb[0] - pd[0]);
cdx = (REAL) (pc[0] - pd[0]);
ady = (REAL) (pa[1] - pd[1]);
bdy = (REAL) (pb[1] - pd[1]);
cdy = (REAL) (pc[1] - pd[1]);
adheight = (REAL) (aheight - dheight);
bdheight = (REAL) (bheight - dheight);
cdheight = (REAL) (cheight - dheight);
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
bc[3] = bc3;
alen = scale_expansion_zeroelim(4, bc, adheight, adet);
Two_Product(cdx, ady, cdxady1, cdxady0);
Two_Product(adx, cdy, adxcdy1, adxcdy0);
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
ca[3] = ca3;
blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
Two_Product(adx, bdy, adxbdy1, adxbdy0);
Two_Product(bdx, ady, bdxady1, bdxady0);
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
ab[3] = ab3;
clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
det = estimate(finlength, fin1);
errbound = o3derrboundB * permanent;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0)
&& (bdytail == 0.0) && (cdytail == 0.0) && (adheighttail == 0.0) && (bdheighttail == 0.0)
&& (cdheighttail == 0.0)) {
return det;
}
errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
det += (adheight * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail))
+ adheighttail * (bdx * cdy - bdy * cdx))
+ (bdheight * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail))
+ bdheighttail * (cdx * ady - cdy * adx))
+ (cdheight * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail))
+ cdheighttail * (adx * bdy - ady * bdx));
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
finnow = fin1;
finother = fin2;
if (adxtail == 0.0) {
if (adytail == 0.0) {
at_b[0] = 0.0;
at_blen = 1;
at_c[0] = 0.0;
at_clen = 1;
}
else {
negate = -adytail;
Two_Product(negate, bdx, at_blarge, at_b[0]);
at_b[1] = at_blarge;
at_blen = 2;
Two_Product(adytail, cdx, at_clarge, at_c[0]);
at_c[1] = at_clarge;
at_clen = 2;
}
}
else {
if (adytail == 0.0) {
Two_Product(adxtail, bdy, at_blarge, at_b[0]);
at_b[1] = at_blarge;
at_blen = 2;
negate = -adxtail;
Two_Product(negate, cdy, at_clarge, at_c[0]);
at_c[1] = at_clarge;
at_clen = 2;
}
else {
Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, at_blarge, at_b[2], at_b[1],
at_b[0]);
at_b[3] = at_blarge;
at_blen = 4;
Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, at_clarge, at_c[2], at_c[1],
at_c[0]);
at_c[3] = at_clarge;
at_clen = 4;
}
}
if (bdxtail == 0.0) {
if (bdytail == 0.0) {
bt_c[0] = 0.0;
bt_clen = 1;
bt_a[0] = 0.0;
bt_alen = 1;
}
else {
negate = -bdytail;
Two_Product(negate, cdx, bt_clarge, bt_c[0]);
bt_c[1] = bt_clarge;
bt_clen = 2;
Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
bt_a[1] = bt_alarge;
bt_alen = 2;
}
}
else {
if (bdytail == 0.0) {
Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
bt_c[1] = bt_clarge;
bt_clen = 2;
negate = -bdxtail;
Two_Product(negate, ady, bt_alarge, bt_a[0]);
bt_a[1] = bt_alarge;
bt_alen = 2;
}
else {
Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, bt_clarge, bt_c[2], bt_c[1],
bt_c[0]);
bt_c[3] = bt_clarge;
bt_clen = 4;
Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, bt_alarge, bt_a[2], bt_a[1],
bt_a[0]);
bt_a[3] = bt_alarge;
bt_alen = 4;
}
}
if (cdxtail == 0.0) {
if (cdytail == 0.0) {
ct_a[0] = 0.0;
ct_alen = 1;
ct_b[0] = 0.0;
ct_blen = 1;
}
else {
negate = -cdytail;
Two_Product(negate, adx, ct_alarge, ct_a[0]);
ct_a[1] = ct_alarge;
ct_alen = 2;
Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
ct_b[1] = ct_blarge;
ct_blen = 2;
}
}
else {
if (cdytail == 0.0) {
Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
ct_a[1] = ct_alarge;
ct_alen = 2;
negate = -cdxtail;
Two_Product(negate, bdy, ct_blarge, ct_b[0]);
ct_b[1] = ct_blarge;
ct_blen = 2;
}
else {
Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, ct_alarge, ct_a[2], ct_a[1],
ct_a[0]);
ct_a[3] = ct_alarge;
ct_alen = 4;
Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, ct_blarge, ct_b[2], ct_b[1],
ct_b[0]);
ct_b[3] = ct_blarge;
ct_blen = 4;
}
}
bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (adheighttail != 0.0) {
vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdheighttail != 0.0) {
vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdheighttail != 0.0) {
vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (adxtail != 0.0) {
if (bdytail != 0.0) {
Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (cdheighttail != 0.0) {
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if (cdytail != 0.0) {
negate = -adxtail;
Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (bdheighttail != 0.0) {
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
}
if (bdxtail != 0.0) {
if (cdytail != 0.0) {
Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (adheighttail != 0.0) {
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if (adytail != 0.0) {
negate = -bdxtail;
Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (cdheighttail != 0.0) {
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
}
if (cdxtail != 0.0) {
if (adytail != 0.0) {
Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (bdheighttail != 0.0) {
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if (bdytail != 0.0) {
negate = -cdxtail;
Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (adheighttail != 0.0) {
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail, u3, u[2], u[1], u[0]);
u[3] = u3;
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
}
if (adheighttail != 0.0) {
wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdheighttail != 0.0) {
wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdheighttail != 0.0) {
wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
return finnow[finlength - 1];
}
REAL orient3d(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd,
REAL aheight, REAL bheight, REAL cheight, REAL dheight) {
REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
REAL det;
REAL permanent, errbound;
m->orient3dcount++;
adx = pa[0] - pd[0];
bdx = pb[0] - pd[0];
cdx = pc[0] - pd[0];
ady = pa[1] - pd[1];
bdy = pb[1] - pd[1];
cdy = pc[1] - pd[1];
adheight = aheight - dheight;
bdheight = bheight - dheight;
cdheight = cheight - dheight;
bdxcdy = bdx * cdy;
cdxbdy = cdx * bdy;
cdxady = cdx * ady;
adxcdy = adx * cdy;
adxbdy = adx * bdy;
bdxady = bdx * ady;
det = adheight * (bdxcdy - cdxbdy) + bdheight * (cdxady - adxcdy) + cdheight * (adxbdy - bdxady);
if (b->noexact) {
return det;
}
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
+ (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
+ (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
errbound = o3derrboundA * permanent;
if ((det > errbound) || (-det > errbound)) {
return det;
}
return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight, permanent);
}
/*****************************************************************************/
/* */
/* nonregular() Return a positive value if the point pd is incompatible */
/* with the circle or plane passing through pa, pb, and pc */
/* (meaning that pd is inside the circle or below the */
/* plane); a negative value if it is compatible; and zero if */
/* the four points are cocircular/coplanar. The points pa, */
/* pb, and pc must be in counterclockwise order, or the sign */
/* of the result will be reversed. */
/* */
/* If the -w switch is used, the points are lifted onto the parabolic */
/* lifting map, then they are dropped according to their weights, then the */
/* 3D orientation test is applied. If the -W switch is used, the points' */
/* heights are already provided, so the 3D orientation test is applied */
/* directly. If neither switch is used, the incircle test is applied. */
/* */
/*****************************************************************************/
REAL nonregular(struct mesh *m, struct behavior *b, vertex pa, vertex pb, vertex pc, vertex pd) {
if (b->weighted == 0) {
return incircle(m, b, pa, pb, pc, pd);
}
else if (b->weighted == 1) {
return orient3d(m, b, pa, pb, pc, pd, pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
pb[0] * pb[0] + pb[1] * pb[1] - pb[2], pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
}
else {
return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
}
}
/*****************************************************************************/
/* */
/* findcircumcenter() Find the circumcenter of a triangle. */
/* */
/* The result is returned both in terms of x-y coordinates and xi-eta */
/* (barycentric) coordinates. The xi-eta coordinate system is defined in */
/* terms of the triangle: the origin of the triangle is the origin of the */
/* coordinate system; the destination of the triangle is one unit along the */
/* xi axis; and the apex of the triangle is one unit along the eta axis. */
/* This procedure also returns the square of the length of the triangle's */
/* shortest edge. */
/* */
/*****************************************************************************/
void findcircumcenter(struct mesh *m, struct behavior *b, vertex torg, vertex tdest, vertex tapex,
vertex circumcenter, REAL *xi, REAL *eta, int offcenter) {
REAL xdo, ydo, xao, yao;
REAL dodist, aodist, dadist;
REAL denominator;
REAL dx, dy, dxoff, dyoff;
m->circumcentercount++;
/* Compute the circumcenter of the triangle. */
xdo = tdest[0] - torg[0];
ydo = tdest[1] - torg[1];
xao = tapex[0] - torg[0];
yao = tapex[1] - torg[1];
dodist = xdo * xdo + ydo * ydo;
aodist = xao * xao + yao * yao;
dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0])
+ (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
if (b->noexact) {
denominator = 0.5 / (xdo * yao - xao * ydo);
}
else {
/* Use the counterclockwise() routine to ensure a positive (and */
/* reasonably accurate) result, avoiding any possibility of */
/* division by zero. */
denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
/* Don't count the above as an orientation test. */
m->counterclockcount--;
}
dx = (yao * dodist - ydo * aodist) * denominator;
dy = (xdo * aodist - xao * dodist) * denominator;
/* Find the (squared) length of the triangle's shortest edge. This */
/* serves as a conservative estimate of the insertion radius of the */
/* circumcenter's parent. The estimate is used to ensure that */
/* the algorithm terminates even if very small angles appear in */
/* the input PSLG. */
if ((dodist < aodist) && (dodist < dadist)) {
if (offcenter && (b->offconstant > 0.0)) {
/* Find the position of the off-center, as described by Alper Ungor. */
dxoff = 0.5 * xdo - b->offconstant * ydo;
dyoff = 0.5 * ydo + b->offconstant * xdo;
/* If the off-center is closer to the origin than the */
/* circumcenter, use the off-center instead. */
if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
dx = dxoff;
dy = dyoff;
}
}
}
else if (aodist < dadist) {
if (offcenter && (b->offconstant > 0.0)) {
dxoff = 0.5 * xao + b->offconstant * yao;
dyoff = 0.5 * yao - b->offconstant * xao;
/* If the off-center is closer to the origin than the */
/* circumcenter, use the off-center instead. */
if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
dx = dxoff;
dy = dyoff;
}
}
}
else {
if (offcenter && (b->offconstant > 0.0)) {
dxoff = 0.5 * (tapex[0] - tdest[0]) - b->offconstant * (tapex[1] - tdest[1]);
dyoff = 0.5 * (tapex[1] - tdest[1]) + b->offconstant * (tapex[0] - tdest[0]);
/* If the off-center is closer to the destination than the */
/* circumcenter, use the off-center instead. */
if (dxoff * dxoff + dyoff * dyoff < (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
dx = xdo + dxoff;
dy = ydo + dyoff;
}
}
}
circumcenter[0] = torg[0] + dx;
circumcenter[1] = torg[1] + dy;
/* To interpolate vertex attributes for the new vertex inserted at */
/* the circumcenter, define a coordinate system with a xi-axis, */
/* directed from the triangle's origin to its destination, and */
/* an eta-axis, directed from its origin to its apex. */
/* Calculate the xi and eta coordinates of the circumcenter. */
*xi = (yao * dx - xao * dy) * (2.0 * denominator);
*eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
}
/** **/
/** **/
/********* Geometric primitives end here *********/
/*****************************************************************************/
/* */
/* triangleinit() Initialize some variables. */
/* */
/*****************************************************************************/
void triangleinit(struct mesh *m) {
poolzero(&m->vertices);
poolzero(&m->triangles);
poolzero(&m->subsegs);
poolzero(&m->viri);
poolzero(&m->badsubsegs);
poolzero(&m->badtriangles);
poolzero(&m->flipstackers);
poolzero(&m->splaynodes);
m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
m->undeads = 0; /* No eliminated input vertices yet. */
m->samples = 1; /* Point location should take at least one sample. */
m->checksegments = 0; /* There are no segments in the triangulation yet. */
m->checkquality = 0; /* The quality triangulation stage has not begun. */
m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
randomseed = 1;
exactinit(); /* Initialize exact arithmetic constants. */
}
/*****************************************************************************/
/* */
/* randomnation() Generate a random number between 0 and `choices' - 1. */
/* */
/* This is a simple linear congruential random number generator. Hence, it */
/* is a bad random number generator, but good enough for most randomized */
/* geometric algorithms. */
/* */
/*****************************************************************************/
unsigned long randomnation(unsigned int choices) {
randomseed = (randomseed * 1366l + 150889l) % 714025l;
return randomseed / (714025l / choices + 1);
}
/********* Point location routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* makevertexmap() Construct a mapping from vertices to triangles to */
/* improve the speed of point location for segment */
/* insertion. */
/* */
/* Traverses all the triangles, and provides each corner of each triangle */
/* with a pointer to that triangle. Of course, pointers will be */
/* overwritten by other pointers because (almost) each vertex is a corner */
/* of several triangles, but in the end every vertex will point to some */
/* triangle that contains it. */
/* */
/*****************************************************************************/
void makevertexmap(struct mesh *m, struct behavior *b) {
struct otri triangleloop;
vertex triorg;
if (b->verbose) {
printf(" Constructing mapping from vertices to triangles.\n");
}
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
while (triangleloop.tri != (triangle *) NULL) {
/* Check all three vertices of the triangle. */
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
org(triangleloop, triorg);
setvertex2tri(triorg, encode(triangleloop));
}
triangleloop.tri = triangletraverse(m);
}
}
/*****************************************************************************/
/* */
/* preciselocate() Find a triangle or edge containing a given point. */
/* */
/* Begins its search from `searchtri'. It is important that `searchtri' */
/* be a handle with the property that `searchpoint' is strictly to the left */
/* of the edge denoted by `searchtri', or is collinear with that edge and */
/* does not intersect that edge. (In particular, `searchpoint' should not */
/* be the origin or destination of that edge.) */
/* */
/* These conditions are imposed because preciselocate() is normally used in */
/* one of two situations: */
/* */
/* (1) To try to find the location to insert a new point. Normally, we */
/* know an edge that the point is strictly to the left of. In the */
/* incremental Delaunay algorithm, that edge is a bounding box edge. */
/* In Ruppert's Delaunay refinement algorithm for quality meshing, */
/* that edge is the shortest edge of the triangle whose circumcenter */
/* is being inserted. */
/* */
/* (2) To try to find an existing point. In this case, any edge on the */
/* convex hull is a good starting edge. You must screen out the */
/* possibility that the vertex sought is an endpoint of the starting */
/* edge before you call preciselocate(). */
/* */
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
/* */
/* This implementation differs from that given by Guibas and Stolfi. It */
/* walks from triangle to triangle, crossing an edge only if `searchpoint' */
/* is on the other side of the line containing that edge. After entering */
/* a triangle, there are two edges by which one can leave that triangle. */
/* If both edges are valid (`searchpoint' is on the other side of both */
/* edges), one of the two is chosen by drawing a line perpendicular to */
/* the entry edge (whose endpoints are `forg' and `fdest') passing through */
/* `fapex'. Depending on which side of this perpendicular `searchpoint' */
/* falls on, an exit edge is chosen. */
/* */
/* This implementation is empirically faster than the Guibas and Stolfi */
/* point location routine (which I originally used), which tends to spiral */
/* in toward its target. */
/* */
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
/* is a handle whose origin is the existing vertex. */
/* */
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
/* handle whose primary edge is the edge on which the point lies. */
/* */
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
/* `searchtri' is a handle on the triangle that contains the point. */
/* */
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
/* handle whose primary edge the point is to the right of. This might */
/* occur when the circumcenter of a triangle falls just slightly outside */
/* the mesh due to floating-point roundoff error. It also occurs when */
/* seeking a hole or region point that a foolish user has placed outside */
/* the mesh. */
/* */
/* If `stopatsubsegment' is nonzero, the search will stop if it tries to */
/* walk through a subsegment, and will return OUTSIDE. */
/* */
/* WARNING: This routine is designed for convex triangulations, and will */
/* not generally work after the holes and concavities have been carved. */
/* However, it can still be used to find the circumcenter of a triangle, as */
/* long as the search is begun from the triangle in question. */
/* */
/*****************************************************************************/
enum locateresult preciselocate(struct mesh *m, struct behavior *b, vertex searchpoint,
struct otri *searchtri, int stopatsubsegment) {
struct otri backtracktri;
struct osub checkedge;
vertex forg, fdest, fapex;
REAL orgorient, destorient;
int moveleft;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (b->verbose > 2) {
printf(" Searching for point (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
}
/* Where are we? */
org(*searchtri, forg);
dest(*searchtri, fdest);
apex(*searchtri, fapex);
while (1) {
if (b->verbose > 2) {
printf(
" At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
}
/* Check whether the apex is the point we seek. */
if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
lprevself(*searchtri);
return ONVERTEX;
}
/* Does the point lie on the other side of the line defined by the */
/* triangle edge opposite the triangle's destination? */
destorient = counterclockwise(m, b, forg, fapex, searchpoint);
/* Does the point lie on the other side of the line defined by the */
/* triangle edge opposite the triangle's origin? */
orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
if (destorient > 0.0) {
if (orgorient > 0.0) {
/* Move left if the inner product of (fapex - searchpoint) and */
/* (fdest - forg) is positive. This is equivalent to drawing */
/* a line perpendicular to the line (forg, fdest) and passing */
/* through `fapex', and determining which side of this line */
/* `searchpoint' falls on. */
moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0])
+ (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
}
else {
moveleft = 1;
}
}
else {
if (orgorient > 0.0) {
moveleft = 0;
}
else {
/* The point we seek must be on the boundary of or inside this */
/* triangle. */
if (destorient == 0.0) {
lprevself(*searchtri);
return ONEDGE;
}
if (orgorient == 0.0) {
lnextself(*searchtri);
return ONEDGE;
}
return INTRIANGLE;
}
}
/* Move to another triangle. Leave a trace `backtracktri' in case */
/* floating-point roundoff or some such bogey causes us to walk */
/* off a boundary of the triangulation. */
if (moveleft) {
lprev(*searchtri, backtracktri);
fdest = fapex;
}
else {
lnext(*searchtri, backtracktri);
forg = fapex;
}
sym(backtracktri, *searchtri);
if (m->checksegments && stopatsubsegment) {
/* Check for walking through a subsegment. */
tspivot(backtracktri, checkedge);
if (checkedge.ss != m->dummysub) {
/* Go back to the last triangle. */
otricopy(backtracktri, *searchtri);
return OUTSIDE;
}
}
/* Check for walking right out of the triangulation. */
if (searchtri->tri == m->dummytri) {
/* Go back to the last triangle. */
otricopy(backtracktri, *searchtri);
return OUTSIDE;
}
apex(*searchtri, fapex);
}
}
/*****************************************************************************/
/* */
/* locate() Find a triangle or edge containing a given point. */
/* */
/* Searching begins from one of: the input `searchtri', a recently */
/* encountered triangle `recenttri', or from a triangle chosen from a */
/* random sample. The choice is made by determining which triangle's */
/* origin is closest to the point we are searching for. Normally, */
/* `searchtri' should be a handle on the convex hull of the triangulation. */
/* */
/* Details on the random sampling method can be found in the Mucke, Saias, */
/* and Zhu paper cited in the header of this code. */
/* */
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
/* */
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
/* is a handle whose origin is the existing vertex. */
/* */
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
/* handle whose primary edge is the edge on which the point lies. */
/* */
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
/* `searchtri' is a handle on the triangle that contains the point. */
/* */
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
/* handle whose primary edge the point is to the right of. This might */
/* occur when the circumcenter of a triangle falls just slightly outside */
/* the mesh due to floating-point roundoff error. It also occurs when */
/* seeking a hole or region point that a foolish user has placed outside */
/* the mesh. */
/* */
/* WARNING: This routine is designed for convex triangulations, and will */
/* not generally work after the holes and concavities have been carved. */
/* */
/*****************************************************************************/
enum locateresult locate(struct mesh *m, struct behavior *b, vertex searchpoint,
struct otri *searchtri) {
VOID **sampleblock;
char *firsttri;
struct otri sampletri;
vertex torg, tdest;
unsigned long alignptr;
REAL searchdist, dist;
REAL ahead;
long samplesperblock, totalsamplesleft, samplesleft;
long population, totalpopulation;
triangle ptr; /* Temporary variable used by sym(). */
if (b->verbose > 2) {
printf(
" Randomly sampling for a triangle near point (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
}
/* Record the distance from the suggested starting triangle to the */
/* point we seek. */
org(*searchtri, torg);
searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (b->verbose > 2) {
printf(" Boundary triangle has origin (%.12g, %.12g).\n", torg[0], torg[1]);
}
/* If a recently encountered triangle has been recorded and has not been */
/* deallocated, test it as a good starting point. */
if (m->recenttri.tri != (triangle *) NULL) {
if (!deadtri(m->recenttri.tri)) {
org(m->recenttri, torg);
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
otricopy(m->recenttri, *searchtri);
return ONVERTEX;
}
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (dist < searchdist) {
otricopy(m->recenttri, *searchtri);
searchdist = dist;
if (b->verbose > 2) {
printf(
" Choosing recent triangle with origin (%.12g, %.12g).\n", torg[0], torg[1]);
}
}
}
}
/* The number of random samples taken is proportional to the cube root of */
/* the number of triangles in the mesh. The next bit of code assumes */
/* that the number of triangles increases monotonically (or at least */
/* doesn't decrease enough to matter). */
while (SAMPLEFACTOR * m->samples * m->samples * m->samples < m->triangles.items) {
m->samples++;
}
/* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples */
/* from each block of triangles (except the first)--until we meet the */
/* sample quota. The ceiling means that blocks at the end might be */
/* neglected, but I don't care. */
samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
/* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
/* from the first block of triangles. */
samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) / m->triangles.maxitems + 1;
totalsamplesleft = m->samples;
population = m->triangles.itemsfirstblock;
totalpopulation = m->triangles.maxitems;
sampleblock = m->triangles.firstblock;
sampletri.orient = 0;
while (totalsamplesleft > 0) {
/* If we're in the last block, `population' needs to be corrected. */
if (population > totalpopulation) {
population = totalpopulation;
}
/* Find a pointer to the first triangle in the block. */
alignptr = (unsigned long) (sampleblock + 1);
firsttri = (char *) (alignptr + (unsigned long) m->triangles.alignbytes
- (alignptr % (unsigned long) m->triangles.alignbytes));
/* Choose `samplesleft' randomly sampled triangles in this block. */
do {
sampletri.tri = (triangle *) (firsttri
+ (randomnation((unsigned int) population) * m->triangles.itembytes));
if (!deadtri(sampletri.tri)) {
org(sampletri, torg);
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (dist < searchdist) {
otricopy(sampletri, *searchtri);
searchdist = dist;
if (b->verbose > 2) {
printf(" Choosing triangle with origin (%.12g, %.12g).\n", torg[0], torg[1]);
}
}
}
samplesleft--;
totalsamplesleft--;
} while ((samplesleft > 0) && (totalsamplesleft > 0));
if (totalsamplesleft > 0) {
sampleblock = (VOID **) *sampleblock;
samplesleft = samplesperblock;
totalpopulation -= population;
population = TRIPERBLOCK;
}
}
/* Where are we? */
org(*searchtri, torg);
dest(*searchtri, tdest);
/* Check the starting triangle's vertices. */
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
return ONVERTEX;
}
if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
lnextself(*searchtri);
return ONVERTEX;
}
/* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
ahead = counterclockwise(m, b, torg, tdest, searchpoint);
if (ahead < 0.0) {
/* Turn around so that `searchpoint' is to the left of the */
/* edge specified by `searchtri'. */
symself(*searchtri);
}
else if (ahead == 0.0) {
/* Check if `searchpoint' is between `torg' and `tdest'. */
if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
&& ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
return ONEDGE;
}
}
return preciselocate(m, b, searchpoint, searchtri, 0);
}
/** **/
/** **/
/********* Point location routines end here *********/
/********* Mesh transformation routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* insertsubseg() Create a new subsegment and insert it between two */
/* triangles. */
/* */
/* The new subsegment is inserted at the edge described by the handle */
/* `tri'. Its vertices are properly initialized. The marker `subsegmark' */
/* is applied to the subsegment and, if appropriate, its vertices. */
/* */
/*****************************************************************************/
void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri, int subsegmark) {
struct otri oppotri;
struct osub newsubseg;
vertex triorg, tridest;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
org(*tri, triorg);
dest(*tri, tridest);
/* Mark vertices if possible. */
if (vertexmark(triorg) == 0) {
setvertexmark(triorg, subsegmark);
}
if (vertexmark(tridest) == 0) {
setvertexmark(tridest, subsegmark);
}
/* Check if there's already a subsegment here. */
tspivot(*tri, newsubseg);
if (newsubseg.ss == m->dummysub) {
/* Make new subsegment and initialize its vertices. */
makesubseg(m, &newsubseg);
setsorg(newsubseg, tridest);
setsdest(newsubseg, triorg);
setsegorg(newsubseg, tridest);
setsegdest(newsubseg, triorg);
/* Bond new subsegment to the two triangles it is sandwiched between. */
/* Note that the facing triangle `oppotri' might be equal to */
/* `dummytri' (outer space), but the new subsegment is bonded to it */
/* all the same. */
tsbond(*tri, newsubseg);
sym(*tri, oppotri);
ssymself(newsubseg);
tsbond(oppotri, newsubseg);
setmark(newsubseg, subsegmark);
if (b->verbose > 2) {
printf(" Inserting new ");
printsubseg(m, b, &newsubseg);
}
}
else {
if (mark(newsubseg) == 0) {
setmark(newsubseg, subsegmark);
}
}
}
/*****************************************************************************/
/* */
/* Terminology */
/* */
/* A "local transformation" replaces a small set of triangles with another */
/* set of triangles. This may or may not involve inserting or deleting a */
/* vertex. */
/* */
/* The term "casing" is used to describe the set of triangles that are */
/* attached to the triangles being transformed, but are not transformed */
/* themselves. Think of the casing as a fixed hollow structure inside */
/* which all the action happens. A "casing" is only defined relative to */
/* a single transformation; each occurrence of a transformation will */
/* involve a different casing. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* flip() Transform two triangles to two different triangles by flipping */
/* an edge counterclockwise within a quadrilateral. */
/* */
/* Imagine the original triangles, abc and bad, oriented so that the */
/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
/* and the vertex a on the right. The vertex c lies below the edge, and */
/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
/* */
/* The triangles abc and bad are deleted and replaced by the triangles cdb */
/* and dca. The triangles that represent abc and bad are NOT deallocated; */
/* they are reused for dca and cdb, respectively. Hence, any handles that */
/* may have held the original triangles are still valid, although not */
/* directed as they were before. */
/* */
/* Upon completion of this routine, the `flipedge' handle holds the edge */
/* dc of triangle dca, and is directed down, from vertex d to vertex c. */
/* (Hence, the two triangles have rotated counterclockwise.) */
/* */
/* WARNING: This transformation is geometrically valid only if the */
/* quadrilateral adbc is convex. Furthermore, this transformation is */
/* valid only if there is not a subsegment between the triangles abc and */
/* bad. This routine does not check either of these preconditions, and */
/* it is the responsibility of the calling routine to ensure that they are */
/* met. If they are not, the streets shall be filled with wailing and */
/* gnashing of teeth. */
/* */
/*****************************************************************************/
void flip(struct mesh *m, struct behavior *b, struct otri *flipedge) {
struct otri botleft, botright;
struct otri topleft, topright;
struct otri top;
struct otri botlcasing, botrcasing;
struct otri toplcasing, toprcasing;
struct osub botlsubseg, botrsubseg;
struct osub toplsubseg, toprsubseg;
vertex leftvertex, rightvertex, botvertex;
vertex farvertex;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
/* Identify the vertices of the quadrilateral. */
org(*flipedge, rightvertex);
dest(*flipedge, leftvertex);
apex(*flipedge, botvertex);
sym(*flipedge, top);
#ifdef SELF_CHECK
if (top.tri == m->dummytri)
{
printf("Internal error in flip(): Attempt to flip on boundary.\n");
lnextself(*flipedge);
return;
}
if (m->checksegments)
{
tspivot(*flipedge, toplsubseg);
if (toplsubseg.ss != m->dummysub)
{
printf("Internal error in flip(): Attempt to flip a segment.\n");
lnextself(*flipedge);
return;
}
}
#endif /* SELF_CHECK */
apex(top, farvertex);
/* Identify the casing of the quadrilateral. */
lprev(top, topleft);
sym(topleft, toplcasing);
lnext(top, topright);
sym(topright, toprcasing);
lnext(*flipedge, botleft);
sym(botleft, botlcasing);
lprev(*flipedge, botright);
sym(botright, botrcasing);
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
bond(topleft, botlcasing);
bond(botleft, botrcasing);
bond(botright, toprcasing);
bond(topright, toplcasing);
if (m->checksegments) {
/* Check for subsegments and rebond them to the quadrilateral. */
tspivot(topleft, toplsubseg);
tspivot(botleft, botlsubseg);
tspivot(botright, botrsubseg);
tspivot(topright, toprsubseg);
if (toplsubseg.ss == m->dummysub) {
tsdissolve(topright);
}
else {
tsbond(topright, toplsubseg);
}
if (botlsubseg.ss == m->dummysub) {
tsdissolve(topleft);
}
else {
tsbond(topleft, botlsubseg);
}
if (botrsubseg.ss == m->dummysub) {
tsdissolve(botleft);
}
else {
tsbond(botleft, botrsubseg);
}
if (toprsubseg.ss == m->dummysub) {
tsdissolve(botright);
}
else {
tsbond(botright, toprsubseg);
}
}
/* New vertex assignments for the rotated quadrilateral. */
setorg(*flipedge, farvertex);
setdest(*flipedge, botvertex);
setapex(*flipedge, rightvertex);
setorg(top, botvertex);
setdest(top, farvertex);
setapex(top, leftvertex);
if (b->verbose > 2) {
printf(" Edge flip results in left ");
printtriangle(m, b, &top);
printf(" and right ");
printtriangle(m, b, flipedge);
}
}
/*****************************************************************************/
/* */
/* unflip() Transform two triangles to two different triangles by */
/* flipping an edge clockwise within a quadrilateral. Reverses */
/* the flip() operation so that the data structures representing */
/* the triangles are back where they were before the flip(). */
/* */
/* Imagine the original triangles, abc and bad, oriented so that the */
/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
/* and the vertex a on the right. The vertex c lies below the edge, and */
/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
/* */
/* The triangles abc and bad are deleted and replaced by the triangles cdb */
/* and dca. The triangles that represent abc and bad are NOT deallocated; */
/* they are reused for cdb and dca, respectively. Hence, any handles that */
/* may have held the original triangles are still valid, although not */
/* directed as they were before. */
/* */
/* Upon completion of this routine, the `flipedge' handle holds the edge */
/* cd of triangle cdb, and is directed up, from vertex c to vertex d. */
/* (Hence, the two triangles have rotated clockwise.) */
/* */
/* WARNING: This transformation is geometrically valid only if the */
/* quadrilateral adbc is convex. Furthermore, this transformation is */
/* valid only if there is not a subsegment between the triangles abc and */
/* bad. This routine does not check either of these preconditions, and */
/* it is the responsibility of the calling routine to ensure that they are */
/* met. If they are not, the streets shall be filled with wailing and */
/* gnashing of teeth. */
/* */
/*****************************************************************************/
void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge) {
struct otri botleft, botright;
struct otri topleft, topright;
struct otri top;
struct otri botlcasing, botrcasing;
struct otri toplcasing, toprcasing;
struct osub botlsubseg, botrsubseg;
struct osub toplsubseg, toprsubseg;
vertex leftvertex, rightvertex, botvertex;
vertex farvertex;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
/* Identify the vertices of the quadrilateral. */
org(*flipedge, rightvertex);
dest(*flipedge, leftvertex);
apex(*flipedge, botvertex);
sym(*flipedge, top);
#ifdef SELF_CHECK
if (top.tri == m->dummytri)
{
printf("Internal error in unflip(): Attempt to flip on boundary.\n");
lnextself(*flipedge);
return;
}
if (m->checksegments)
{
tspivot(*flipedge, toplsubseg);
if (toplsubseg.ss != m->dummysub)
{
printf("Internal error in unflip(): Attempt to flip a subsegment.\n");
lnextself(*flipedge);
return;
}
}
#endif /* SELF_CHECK */
apex(top, farvertex);
/* Identify the casing of the quadrilateral. */
lprev(top, topleft);
sym(topleft, toplcasing);
lnext(top, topright);
sym(topright, toprcasing);
lnext(*flipedge, botleft);
sym(botleft, botlcasing);
lprev(*flipedge, botright);
sym(botright, botrcasing);
/* Rotate the quadrilateral one-quarter turn clockwise. */
bond(topleft, toprcasing);
bond(botleft, toplcasing);
bond(botright, botlcasing);
bond(topright, botrcasing);
if (m->checksegments) {
/* Check for subsegments and rebond them to the quadrilateral. */
tspivot(topleft, toplsubseg);
tspivot(botleft, botlsubseg);
tspivot(botright, botrsubseg);
tspivot(topright, toprsubseg);
if (toplsubseg.ss == m->dummysub) {
tsdissolve(botleft);
}
else {
tsbond(botleft, toplsubseg);
}
if (botlsubseg.ss == m->dummysub) {
tsdissolve(botright);
}
else {
tsbond(botright, botlsubseg);
}
if (botrsubseg.ss == m->dummysub) {
tsdissolve(topright);
}
else {
tsbond(topright, botrsubseg);
}
if (toprsubseg.ss == m->dummysub) {
tsdissolve(topleft);
}
else {
tsbond(topleft, toprsubseg);
}
}
/* New vertex assignments for the rotated quadrilateral. */
setorg(*flipedge, botvertex);
setdest(*flipedge, farvertex);
setapex(*flipedge, leftvertex);
setorg(top, farvertex);
setdest(top, botvertex);
setapex(top, rightvertex);
if (b->verbose > 2) {
printf(" Edge unflip results in left ");
printtriangle(m, b, flipedge);
printf(" and right ");
printtriangle(m, b, &top);
}
}
/*****************************************************************************/
/* */
/* insertvertex() Insert a vertex into a Delaunay triangulation, */
/* performing flips as necessary to maintain the Delaunay */
/* property. */
/* */
/* The point `insertvertex' is located. If `searchtri.tri' is not NULL, */
/* the search for the containing triangle begins from `searchtri'. If */
/* `searchtri.tri' is NULL, a full point location procedure is called. */
/* If `insertvertex' is found inside a triangle, the triangle is split into */
/* three; if `insertvertex' lies on an edge, the edge is split in two, */
/* thereby splitting the two adjacent triangles into four. Edge flips are */
/* used to restore the Delaunay property. If `insertvertex' lies on an */
/* existing vertex, no action is taken, and the value DUPLICATEVERTEX is */
/* returned. On return, `searchtri' is set to a handle whose origin is the */
/* existing vertex. */
/* */
/* Normally, the parameter `splitseg' is set to NULL, implying that no */
/* subsegment should be split. In this case, if `insertvertex' is found to */
/* lie on a segment, no action is taken, and the value VIOLATINGVERTEX is */
/* returned. On return, `searchtri' is set to a handle whose primary edge */
/* is the violated subsegment. */
/* */
/* If the calling routine wishes to split a subsegment by inserting a */
/* vertex in it, the parameter `splitseg' should be that subsegment. In */
/* this case, `searchtri' MUST be the triangle handle reached by pivoting */
/* from that subsegment; no point location is done. */
/* */
/* `segmentflaws' and `triflaws' are flags that indicate whether or not */
/* there should be checks for the creation of encroached subsegments or bad */
/* quality triangles. If a newly inserted vertex encroaches upon */
/* subsegments, these subsegments are added to the list of subsegments to */
/* be split if `segmentflaws' is set. If bad triangles are created, these */
/* are added to the queue if `triflaws' is set. */
/* */
/* If a duplicate vertex or violated segment does not prevent the vertex */
/* from being inserted, the return value will be ENCROACHINGVERTEX if the */
/* vertex encroaches upon a subsegment (and checking is enabled), or */
/* SUCCESSFULVERTEX otherwise. In either case, `searchtri' is set to a */
/* handle whose origin is the newly inserted vertex. */
/* */
/* insertvertex() does not use flip() for reasons of speed; some */
/* information can be reused from edge flip to edge flip, like the */
/* locations of subsegments. */
/* */
/*****************************************************************************/
enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b, vertex newvertex,
struct otri *searchtri, struct osub *splitseg, int segmentflaws, int triflaws) {
struct otri horiz;
struct otri top;
struct otri botleft, botright;
struct otri topleft, topright;
struct otri newbotleft, newbotright;
struct otri newtopright;
struct otri botlcasing, botrcasing;
struct otri toplcasing, toprcasing;
struct otri testtri;
struct osub botlsubseg, botrsubseg;
struct osub toplsubseg, toprsubseg;
struct osub brokensubseg;
struct osub checksubseg;
struct osub rightsubseg;
struct osub newsubseg;
struct badsubseg *encroached;
struct flipstacker *newflip;
vertex first;
vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
vertex segmentorg, segmentdest;
REAL attrib;
REAL area;
enum insertvertexresult success;
enum locateresult intersect;
int doflip;
int mirrorflag;
int enq;
int i;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by spivot() and tspivot(). */
if (b->verbose > 1) {
printf(" Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
}
if (splitseg == (struct osub *) NULL) {
/* Find the location of the vertex to be inserted. Check if a good */
/* starting triangle has already been provided by the caller. */
if (searchtri->tri == m->dummytri) {
/* Find a boundary triangle. */
horiz.tri = m->dummytri;
horiz.orient = 0;
symself(horiz);
/* Search for a triangle containing `newvertex'. */
intersect = locate(m, b, newvertex, &horiz);
}
else {
/* Start searching from the triangle provided by the caller. */
otricopy(*searchtri, horiz);
intersect = preciselocate(m, b, newvertex, &horiz, 1);
}
}
else {
/* The calling routine provides the subsegment in which */
/* the vertex is inserted. */
otricopy(*searchtri, horiz);
intersect = ONEDGE;
}
if (intersect == ONVERTEX) {
/* There's already a vertex there. Return in `searchtri' a triangle */
/* whose origin is the existing vertex. */
otricopy(horiz, *searchtri);
otricopy(horiz, m->recenttri);
return DUPLICATEVERTEX;
}
if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
/* The vertex falls on an edge or boundary. */
if (m->checksegments && (splitseg == (struct osub *) NULL)) {
/* Check whether the vertex falls on a subsegment. */
tspivot(horiz, brokensubseg);
if (brokensubseg.ss != m->dummysub) {
/* The vertex falls on a subsegment, and hence will not be inserted. */
if (segmentflaws) {
enq = b->nobisect != 2;
if (enq && (b->nobisect == 1)) {
/* This subsegment may be split only if it is an */
/* internal boundary. */
sym(horiz, testtri);
enq = testtri.tri != m->dummytri;
}
if (enq) {
/* Add the subsegment to the list of encroached subsegments. */
encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
encroached->encsubseg = sencode(brokensubseg);
sorg(brokensubseg, encroached->subsegorg);
sdest(brokensubseg, encroached->subsegdest);
if (b->verbose > 2) {
printf(
" Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n", encroached->subsegorg[0], encroached->subsegorg[1], encroached->subsegdest[0], encroached->subsegdest[1]);
}
}
}
/* Return a handle whose primary edge contains the vertex, */
/* which has not been inserted. */
otricopy(horiz, *searchtri);
otricopy(horiz, m->recenttri);
return VIOLATINGVERTEX;
}
}
/* Insert the vertex on an edge, dividing one triangle into two (if */
/* the edge lies on a boundary) or two triangles into four. */
lprev(horiz, botright);
sym(botright, botrcasing);
sym(horiz, topright);
/* Is there a second triangle? (Or does this edge lie on a boundary?) */
mirrorflag = topright.tri != m->dummytri;
if (mirrorflag) {
lnextself(topright);
sym(topright, toprcasing);
maketriangle(m, b, &newtopright);
}
else {
/* Splitting a boundary edge increases the number of boundary edges. */
m->hullsize++;
}
maketriangle(m, b, &newbotright);
/* Set the vertices of changed and new triangles. */
org(horiz, rightvertex);
dest(horiz, leftvertex);
apex(horiz, botvertex);
setorg(newbotright, botvertex);
setdest(newbotright, rightvertex);
setapex(newbotright, newvertex);
setorg(horiz, newvertex);
for (i = 0; i < m->eextras; i++) {
/* Set the element attributes of a new triangle. */
setelemattribute(newbotright, i, elemattribute(botright, i));
}
if (b->vararea) {
/* Set the area constraint of a new triangle. */
setareabound(newbotright, areabound(botright));
}
if (mirrorflag) {
dest(topright, topvertex);
setorg(newtopright, rightvertex);
setdest(newtopright, topvertex);
setapex(newtopright, newvertex);
setorg(topright, newvertex);
for (i = 0; i < m->eextras; i++) {
/* Set the element attributes of another new triangle. */
setelemattribute(newtopright, i, elemattribute(topright, i));
}
if (b->vararea) {
/* Set the area constraint of another new triangle. */
setareabound(newtopright, areabound(topright));
}
}
/* There may be subsegments that need to be bonded */
/* to the new triangle(s). */
if (m->checksegments) {
tspivot(botright, botrsubseg);
if (botrsubseg.ss != m->dummysub) {
tsdissolve(botright);
tsbond(newbotright, botrsubseg);
}
if (mirrorflag) {
tspivot(topright, toprsubseg);
if (toprsubseg.ss != m->dummysub) {
tsdissolve(topright);
tsbond(newtopright, toprsubseg);
}
}
}
/* Bond the new triangle(s) to the surrounding triangles. */
bond(newbotright, botrcasing);
lprevself(newbotright);
bond(newbotright, botright);
lprevself(newbotright);
if (mirrorflag) {
bond(newtopright, toprcasing);
lnextself(newtopright);
bond(newtopright, topright);
lnextself(newtopright);
bond(newtopright, newbotright);
}
if (splitseg != (struct osub *) NULL) {
/* Split the subsegment into two. */
setsdest(*splitseg, newvertex);
segorg(*splitseg, segmentorg);
segdest(*splitseg, segmentdest);
ssymself(*splitseg);
spivot(*splitseg, rightsubseg);
insertsubseg(m, b, &newbotright, mark(*splitseg));
tspivot(newbotright, newsubseg);
setsegorg(newsubseg, segmentorg);
setsegdest(newsubseg, segmentdest);
sbond(*splitseg, newsubseg);
ssymself(newsubseg);
sbond(newsubseg, rightsubseg);
ssymself(*splitseg);
/* Transfer the subsegment's boundary marker to the vertex */
/* if required. */
if (vertexmark(newvertex) == 0) {
setvertexmark(newvertex, mark(*splitseg));
}
}
if (m->checkquality) {
poolrestart(&m->flipstackers);
m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
m->lastflip->flippedtri = encode(horiz);
m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
}
#ifdef SELF_CHECK
if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(
" Clockwise triangle prior to edge vertex insertion (bottom).\n");
}
if (mirrorflag)
{
if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle prior to edge vertex insertion (top).\n");
}
if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(
" Clockwise triangle after edge vertex insertion (top right).\n");
}
if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(
" Clockwise triangle after edge vertex insertion (top left).\n");
}
}
if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(
" Clockwise triangle after edge vertex insertion (bottom left).\n");
}
if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(
" Clockwise triangle after edge vertex insertion (bottom right).\n");
}
#endif /* SELF_CHECK */
if (b->verbose > 2) {
printf(" Updating bottom left ");
printtriangle(m, b, &botright);
if (mirrorflag) {
printf(" Updating top left ");
printtriangle(m, b, &topright);
printf(" Creating top right ");
printtriangle(m, b, &newtopright);
}
printf(" Creating bottom right ");
printtriangle(m, b, &newbotright);
}
/* Position `horiz' on the first edge to check for */
/* the Delaunay property. */
lnextself(horiz);
}
else {
/* Insert the vertex in a triangle, splitting it into three. */
lnext(horiz, botleft);
lprev(horiz, botright);
sym(botleft, botlcasing);
sym(botright, botrcasing);
maketriangle(m, b, &newbotleft);
maketriangle(m, b, &newbotright);
/* Set the vertices of changed and new triangles. */
org(horiz, rightvertex);
dest(horiz, leftvertex);
apex(horiz, botvertex);
setorg(newbotleft, leftvertex);
setdest(newbotleft, botvertex);
setapex(newbotleft, newvertex);
setorg(newbotright, botvertex);
setdest(newbotright, rightvertex);
setapex(newbotright, newvertex);
setapex(horiz, newvertex);
for (i = 0; i < m->eextras; i++) {
/* Set the element attributes of the new triangles. */
attrib = elemattribute(horiz, i);
setelemattribute(newbotleft, i, attrib);
setelemattribute(newbotright, i, attrib);
}
if (b->vararea) {
/* Set the area constraint of the new triangles. */
area = areabound(horiz);
setareabound(newbotleft, area);
setareabound(newbotright, area);
}
/* There may be subsegments that need to be bonded */
/* to the new triangles. */
if (m->checksegments) {
tspivot(botleft, botlsubseg);
if (botlsubseg.ss != m->dummysub) {
tsdissolve(botleft);
tsbond(newbotleft, botlsubseg);
}
tspivot(botright, botrsubseg);
if (botrsubseg.ss != m->dummysub) {
tsdissolve(botright);
tsbond(newbotright, botrsubseg);
}
}
/* Bond the new triangles to the surrounding triangles. */
bond(newbotleft, botlcasing);
bond(newbotright, botrcasing);
lnextself(newbotleft);
lprevself(newbotright);
bond(newbotleft, newbotright);
lnextself(newbotleft);
bond(botleft, newbotleft);
lprevself(newbotright);
bond(botright, newbotright);
if (m->checkquality) {
poolrestart(&m->flipstackers);
m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
m->lastflip->flippedtri = encode(horiz);
m->lastflip->prevflip = (struct flipstacker *) NULL;
}
#ifdef SELF_CHECK
if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle prior to vertex insertion.\n");
}
if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle after vertex insertion (top).\n");
}
if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle after vertex insertion (left).\n");
}
if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle after vertex insertion (right).\n");
}
#endif /* SELF_CHECK */
if (b->verbose > 2) {
printf(" Updating top ");
printtriangle(m, b, &horiz);
printf(" Creating left ");
printtriangle(m, b, &newbotleft);
printf(" Creating right ");
printtriangle(m, b, &newbotright);
}
}
/* The insertion is successful by default, unless an encroached */
/* subsegment is found. */
success = SUCCESSFULVERTEX;
/* Circle around the newly inserted vertex, checking each edge opposite */
/* it for the Delaunay property. Non-Delaunay edges are flipped. */
/* `horiz' is always the edge being checked. `first' marks where to */
/* stop circling. */
org(horiz, first);
rightvertex = first;
dest(horiz, leftvertex);
/* Circle until finished. */
while (1) {
/* By default, the edge will be flipped. */
doflip = 1;
if (m->checksegments) {
/* Check for a subsegment, which cannot be flipped. */
tspivot(horiz, checksubseg);
if (checksubseg.ss != m->dummysub) {
/* The edge is a subsegment and cannot be flipped. */
doflip = 0;
#ifndef CDT_ONLY
if (segmentflaws)
{
/* Does the new vertex encroach upon this subsegment? */
if (checkseg4encroach(m, b, &checksubseg))
{
success = ENCROACHINGVERTEX;
}
}
#endif /* not CDT_ONLY */
}
}
if (doflip) {
/* Check if the edge is a boundary edge. */
sym(horiz, top);
if (top.tri == m->dummytri) {
/* The edge is a boundary edge and cannot be flipped. */
doflip = 0;
}
else {
/* Find the vertex on the other side of the edge. */
apex(top, farvertex);
/* In the incremental Delaunay triangulation algorithm, any of */
/* `leftvertex', `rightvertex', and `farvertex' could be vertices */
/* of the triangular bounding box. These vertices must be */
/* treated as if they are infinitely distant, even though their */
/* "coordinates" are not. */
if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2)
|| (leftvertex == m->infvertex3)) {
/* `leftvertex' is infinitely distant. Check the convexity of */
/* the boundary of the triangulation. 'farvertex' might be */
/* infinite as well, but trust me, this same condition should */
/* be applied. */
doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex) > 0.0;
}
else if ((rightvertex == m->infvertex1) || (rightvertex == m->infvertex2)
|| (rightvertex == m->infvertex3)) {
/* `rightvertex' is infinitely distant. Check the convexity of */
/* the boundary of the triangulation. 'farvertex' might be */
/* infinite as well, but trust me, this same condition should */
/* be applied. */
doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex) > 0.0;
}
else if ((farvertex == m->infvertex1) || (farvertex == m->infvertex2)
|| (farvertex == m->infvertex3)) {
/* `farvertex' is infinitely distant and cannot be inside */
/* the circumcircle of the triangle `horiz'. */
doflip = 0;
}
else {
/* Test whether the edge is locally Delaunay. */
doflip = incircle(m, b, leftvertex, newvertex, rightvertex, farvertex) > 0.0;
}
if (doflip) {
/* We made it! Flip the edge `horiz' by rotating its containing */
/* quadrilateral (the two triangles adjacent to `horiz'). */
/* Identify the casing of the quadrilateral. */
lprev(top, topleft);
sym(topleft, toplcasing);
lnext(top, topright);
sym(topright, toprcasing);
lnext(horiz, botleft);
sym(botleft, botlcasing);
lprev(horiz, botright);
sym(botright, botrcasing);
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
bond(topleft, botlcasing);
bond(botleft, botrcasing);
bond(botright, toprcasing);
bond(topright, toplcasing);
if (m->checksegments) {
/* Check for subsegments and rebond them to the quadrilateral. */
tspivot(topleft, toplsubseg);
tspivot(botleft, botlsubseg);
tspivot(botright, botrsubseg);
tspivot(topright, toprsubseg);
if (toplsubseg.ss == m->dummysub) {
tsdissolve(topright);
}
else {
tsbond(topright, toplsubseg);
}
if (botlsubseg.ss == m->dummysub) {
tsdissolve(topleft);
}
else {
tsbond(topleft, botlsubseg);
}
if (botrsubseg.ss == m->dummysub) {
tsdissolve(botleft);
}
else {
tsbond(botleft, botrsubseg);
}
if (toprsubseg.ss == m->dummysub) {
tsdissolve(botright);
}
else {
tsbond(botright, toprsubseg);
}
}
/* New vertex assignments for the rotated quadrilateral. */
setorg(horiz, farvertex);
setdest(horiz, newvertex);
setapex(horiz, rightvertex);
setorg(top, newvertex);
setdest(top, farvertex);
setapex(top, leftvertex);
for (i = 0; i < m->eextras; i++) {
/* Take the average of the two triangles' attributes. */
attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
setelemattribute(top, i, attrib);
setelemattribute(horiz, i, attrib);
}
if (b->vararea) {
if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
area = -1.0;
}
else {
/* Take the average of the two triangles' area constraints. */
/* This prevents small area constraints from migrating a */
/* long, long way from their original location due to flips. */
area = 0.5 * (areabound(top) + areabound(horiz));
}
setareabound(top, area);
setareabound(horiz, area);
}
if (m->checkquality) {
newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
newflip->flippedtri = encode(horiz);
newflip->prevflip = m->lastflip;
m->lastflip = newflip;
}
#ifdef SELF_CHECK
if (newvertex != (vertex) NULL)
{
if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle prior to edge flip (bottom).\n");
}
/* The following test has been removed because constrainededge() */
/* sometimes generates inverted triangles that insertvertex() */
/* removes. */
/*
if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
0.0) {
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle prior to edge flip (top).\n");
}
*/
if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle after edge flip (left).\n");
}
if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
0.0)
{
printf("Internal error in insertvertex():\n");
printf(" Clockwise triangle after edge flip (right).\n");
}
}
#endif /* SELF_CHECK */
if (b->verbose > 2) {
printf(" Edge flip results in left ");
lnextself(topleft);
printtriangle(m, b, &topleft);
printf(" and right ");
printtriangle(m, b, &horiz);
}
/* On the next iterations, consider the two edges that were */
/* exposed (this is, are now visible to the newly inserted */
/* vertex) by the edge flip. */
lprevself(horiz);
leftvertex = farvertex;
}
}
}
if (!doflip) {
/* The handle `horiz' is accepted as locally Delaunay. */
#ifndef CDT_ONLY
if (triflaws)
{
/* Check the triangle `horiz' for quality. */
testtriangle(m, b, &horiz);
}
#endif /* not CDT_ONLY */
/* Look for the next edge around the newly inserted vertex. */
lnextself(horiz);
sym(horiz, testtri);
/* Check for finishing a complete revolution about the new vertex, or */
/* falling outside of the triangulation. The latter will happen */
/* when a vertex is inserted at a boundary. */
if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
/* We're done. Return a triangle whose origin is the new vertex. */
lnext(horiz, *searchtri);
lnext(horiz, m->recenttri);
return success;
}
/* Finish finding the next edge around the newly inserted vertex. */
lnext(testtri, horiz);
rightvertex = leftvertex;
dest(horiz, leftvertex);
}
}
}
/********* Divide-and-conquer Delaunay triangulation begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* The divide-and-conquer bounding box */
/* */
/* I originally implemented the divide-and-conquer and incremental Delaunay */
/* triangulations using the edge-based data structure presented by Guibas */
/* and Stolfi. Switching to a triangle-based data structure doubled the */
/* speed. However, I had to think of a few extra tricks to maintain the */
/* elegance of the original algorithms. */
/* */
/* The "bounding box" used by my variant of the divide-and-conquer */
/* algorithm uses one triangle for each edge of the convex hull of the */
/* triangulation. These bounding triangles all share a common apical */
/* vertex, which is represented by NULL and which represents nothing. */
/* The bounding triangles are linked in a circular fan about this NULL */
/* vertex, and the edges on the convex hull of the triangulation appear */
/* opposite the NULL vertex. You might find it easiest to imagine that */
/* the NULL vertex is a point in 3D space behind the center of the */
/* triangulation, and that the bounding triangles form a sort of cone. */
/* */
/* This bounding box makes it easy to represent degenerate cases. For */
/* instance, the triangulation of two vertices is a single edge. This edge */
/* is represented by two bounding box triangles, one on each "side" of the */
/* edge. These triangles are also linked together in a fan about the NULL */
/* vertex. */
/* */
/* The bounding box also makes it easy to traverse the convex hull, as the */
/* divide-and-conquer algorithm needs to do. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* vertexsort() Sort an array of vertices by x-coordinate, using the */
/* y-coordinate as a secondary key. */
/* */
/* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */
/* the usual quicksort mistakes. */
/* */
/*****************************************************************************/
void vertexsort(vertex *sortarray, int arraysize) {
int left, right;
int pivot;
REAL pivotx, pivoty;
vertex temp;
if (arraysize == 2) {
/* Recursive base case. */
if ((sortarray[0][0] > sortarray[1][0])
|| ((sortarray[0][0] == sortarray[1][0]) && (sortarray[0][1] > sortarray[1][1]))) {
temp = sortarray[1];
sortarray[1] = sortarray[0];
sortarray[0] = temp;
}
return;
}
/* Choose a random pivot to split the array. */
pivot = (int) randomnation((unsigned int) arraysize);
pivotx = sortarray[pivot][0];
pivoty = sortarray[pivot][1];
/* Split the array. */
left = -1;
right = arraysize;
while (left < right) {
/* Search for a vertex whose x-coordinate is too large for the left. */
do {
left++;
} while ((left <= right)
&& ((sortarray[left][0] < pivotx)
|| ((sortarray[left][0] == pivotx) && (sortarray[left][1] < pivoty))));
/* Search for a vertex whose x-coordinate is too small for the right. */
do {
right--;
} while ((left <= right)
&& ((sortarray[right][0] > pivotx)
|| ((sortarray[right][0] == pivotx) && (sortarray[right][1] > pivoty))));
if (left < right) {
/* Swap the left and right vertices. */
temp = sortarray[left];
sortarray[left] = sortarray[right];
sortarray[right] = temp;
}
}
if (left > 1) {
/* Recursively sort the left subset. */
vertexsort(sortarray, left);
}
if (right < arraysize - 2) {
/* Recursively sort the right subset. */
vertexsort(&sortarray[right + 1], arraysize - right - 1);
}
}
/*****************************************************************************/
/* */
/* vertexmedian() An order statistic algorithm, almost. Shuffles an */
/* array of vertices so that the first `median' vertices */
/* occur lexicographically before the remaining vertices. */
/* */
/* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */
/* if axis == 1. Very similar to the vertexsort() procedure, but runs in */
/* randomized linear time. */
/* */
/*****************************************************************************/
void vertexmedian(vertex *sortarray, int arraysize, int median, int axis) {
int left, right;
int pivot;
REAL pivot1, pivot2;
vertex temp;
if (arraysize == 2) {
/* Recursive base case. */
if ((sortarray[0][axis] > sortarray[1][axis])
|| ((sortarray[0][axis] == sortarray[1][axis])
&& (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
temp = sortarray[1];
sortarray[1] = sortarray[0];
sortarray[0] = temp;
}
return;
}
/* Choose a random pivot to split the array. */
pivot = (int) randomnation((unsigned int) arraysize);
pivot1 = sortarray[pivot][axis];
pivot2 = sortarray[pivot][1 - axis];
/* Split the array. */
left = -1;
right = arraysize;
while (left < right) {
/* Search for a vertex whose x-coordinate is too large for the left. */
do {
left++;
} while ((left <= right)
&& ((sortarray[left][axis] < pivot1)
|| ((sortarray[left][axis] == pivot1) && (sortarray[left][1 - axis] < pivot2))));
/* Search for a vertex whose x-coordinate is too small for the right. */
do {
right--;
} while ((left <= right)
&& ((sortarray[right][axis] > pivot1)
|| ((sortarray[right][axis] == pivot1) && (sortarray[right][1 - axis] > pivot2))));
if (left < right) {
/* Swap the left and right vertices. */
temp = sortarray[left];
sortarray[left] = sortarray[right];
sortarray[right] = temp;
}
}
/* Unlike in vertexsort(), at most one of the following */
/* conditionals is true. */
if (left > median) {
/* Recursively shuffle the left subset. */
vertexmedian(sortarray, left, median, axis);
}
if (right < median - 1) {
/* Recursively shuffle the right subset. */
vertexmedian(&sortarray[right + 1], arraysize - right - 1, median - right - 1, axis);
}
}
/*****************************************************************************/
/* */
/* alternateaxes() Sorts the vertices as appropriate for the divide-and- */
/* conquer algorithm with alternating cuts. */
/* */
/* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */
/* For the base case, subsets containing only two or three vertices are */
/* always sorted by x-coordinate. */
/* */
/*****************************************************************************/
void alternateaxes(vertex *sortarray, int arraysize, int axis) {
int divider;
divider = arraysize >> 1;
if (arraysize <= 3) {
/* Recursive base case: subsets of two or three vertices will be */
/* handled specially, and should always be sorted by x-coordinate. */
axis = 0;
}
/* Partition with a horizontal or vertical cut. */
vertexmedian(sortarray, arraysize, divider, axis);
/* Recursively partition the subsets with a cross cut. */
if (arraysize - divider >= 2) {
if (divider >= 2) {
alternateaxes(sortarray, divider, 1 - axis);
}
alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
}
}
/*****************************************************************************/
/* */
/* mergehulls() Merge two adjacent Delaunay triangulations into a */
/* single Delaunay triangulation. */
/* */
/* This is similar to the algorithm given by Guibas and Stolfi, but uses */
/* a triangle-based, rather than edge-based, data structure. */
/* */
/* The algorithm walks up the gap between the two triangulations, knitting */
/* them together. As they are merged, some of their bounding triangles */
/* are converted into real triangles of the triangulation. The procedure */
/* pulls each hull's bounding triangles apart, then knits them together */
/* like the teeth of two gears. The Delaunay property determines, at each */
/* step, whether the next "tooth" is a bounding triangle of the left hull */
/* or the right. When a bounding triangle becomes real, its apex is */
/* changed from NULL to a real vertex. */
/* */
/* Only two new triangles need to be allocated. These become new bounding */
/* triangles at the top and bottom of the seam. They are used to connect */
/* the remaining bounding triangles (those that have not been converted */
/* into real triangles) into a single fan. */
/* */
/* On entry, `farleft' and `innerleft' are bounding triangles of the left */
/* triangulation. The origin of `farleft' is the leftmost vertex, and */
/* the destination of `innerleft' is the rightmost vertex of the */
/* triangulation. Similarly, `innerright' and `farright' are bounding */
/* triangles of the right triangulation. The origin of `innerright' and */
/* destination of `farright' are the leftmost and rightmost vertices. */
/* */
/* On completion, the origin of `farleft' is the leftmost vertex of the */
/* merged triangulation, and the destination of `farright' is the rightmost */
/* vertex. */
/* */
/*****************************************************************************/
void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft, struct otri *innerleft,
struct otri *innerright, struct otri *farright, int axis) {
struct otri leftcand, rightcand;
struct otri baseedge;
struct otri nextedge;
struct otri sidecasing, topcasing, outercasing;
struct otri checkedge;
vertex innerleftdest;
vertex innerrightorg;
vertex innerleftapex, innerrightapex;
vertex farleftpt, farrightpt;
vertex farleftapex, farrightapex;
vertex lowerleft, lowerright;
vertex upperleft, upperright;
vertex nextapex;
vertex checkvertex;
int changemade;
int badedge;
int leftfinished, rightfinished;
triangle ptr; /* Temporary variable used by sym(). */
dest(*innerleft, innerleftdest);
apex(*innerleft, innerleftapex);
org(*innerright, innerrightorg);
apex(*innerright, innerrightapex);
/* Special treatment for horizontal cuts. */
if (b->dwyer && (axis == 1)) {
org(*farleft, farleftpt);
apex(*farleft, farleftapex);
dest(*farright, farrightpt);
apex(*farright, farrightapex);
/* The pointers to the extremal vertices are shifted to point to the */
/* topmost and bottommost vertex of each hull, rather than the */
/* leftmost and rightmost vertices. */
while (farleftapex[1] < farleftpt[1]) {
lnextself(*farleft);
symself(*farleft);
farleftpt = farleftapex;
apex(*farleft, farleftapex);
}
sym(*innerleft, checkedge);
apex(checkedge, checkvertex);
while (checkvertex[1] > innerleftdest[1]) {
lnext(checkedge, *innerleft);
innerleftapex = innerleftdest;
innerleftdest = checkvertex;
sym(*innerleft, checkedge);
apex(checkedge, checkvertex);
}
while (innerrightapex[1] < innerrightorg[1]) {
lnextself(*innerright);
symself(*innerright);
innerrightorg = innerrightapex;
apex(*innerright, innerrightapex);
}
sym(*farright, checkedge);
apex(checkedge, checkvertex);
while (checkvertex[1] > farrightpt[1]) {
lnext(checkedge, *farright);
farrightapex = farrightpt;
farrightpt = checkvertex;
sym(*farright, checkedge);
apex(checkedge, checkvertex);
}
}
/* Find a line tangent to and below both hulls. */
do {
changemade = 0;
/* Make innerleftdest the "bottommost" vertex of the left hull. */
if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) > 0.0) {
lprevself(*innerleft);
symself(*innerleft);
innerleftdest = innerleftapex;
apex(*innerleft, innerleftapex);
changemade = 1;
}
/* Make innerrightorg the "bottommost" vertex of the right hull. */
if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) > 0.0) {
lnextself(*innerright);
symself(*innerright);
innerrightorg = innerrightapex;
apex(*innerright, innerrightapex);
changemade = 1;
}
} while (changemade);
/* Find the two candidates to be the next "gear tooth." */
sym(*innerleft, leftcand);
sym(*innerright, rightcand);
/* Create the bottom new bounding triangle. */
maketriangle(m, b, &baseedge);
/* Connect it to the bounding boxes of the left and right triangulations. */
bond(baseedge, *innerleft);
lnextself(baseedge);
bond(baseedge, *innerright);
lnextself(baseedge);
setorg(baseedge, innerrightorg);
setdest(baseedge, innerleftdest);
/* Apex is intentionally left NULL. */
if (b->verbose > 2) {
printf(" Creating base bounding ");
printtriangle(m, b, &baseedge);
}
/* Fix the extreme triangles if necessary. */
org(*farleft, farleftpt);
if (innerleftdest == farleftpt) {
lnext(baseedge, *farleft);
}
dest(*farright, farrightpt);
if (innerrightorg == farrightpt) {
lprev(baseedge, *farright);
}
/* The vertices of the current knitting edge. */
lowerleft = innerleftdest;
lowerright = innerrightorg;
/* The candidate vertices for knitting. */
apex(leftcand, upperleft);
apex(rightcand, upperright);
/* Walk up the gap between the two triangulations, knitting them together. */
while (1) {
/* Have we reached the top? (This isn't quite the right question, */
/* because even though the left triangulation might seem finished now, */
/* moving up on the right triangulation might reveal a new vertex of */
/* the left triangulation. And vice-versa.) */
leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <= 0.0;
rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright) <= 0.0;
if (leftfinished && rightfinished) {
/* Create the top new bounding triangle. */
maketriangle(m, b, &nextedge);
setorg(nextedge, lowerleft);
setdest(nextedge, lowerright);
/* Apex is intentionally left NULL. */
/* Connect it to the bounding boxes of the two triangulations. */
bond(nextedge, baseedge);
lnextself(nextedge);
bond(nextedge, rightcand);
lnextself(nextedge);
bond(nextedge, leftcand);
if (b->verbose > 2) {
printf(" Creating top bounding ");
printtriangle(m, b, &nextedge);
}
/* Special treatment for horizontal cuts. */
if (b->dwyer && (axis == 1)) {
org(*farleft, farleftpt);
apex(*farleft, farleftapex);
dest(*farright, farrightpt);
apex(*farright, farrightapex);
sym(*farleft, checkedge);
apex(checkedge, checkvertex);
/* The pointers to the extremal vertices are restored to the */
/* leftmost and rightmost vertices (rather than topmost and */
/* bottommost). */
while (checkvertex[0] < farleftpt[0]) {
lprev(checkedge, *farleft);
farleftapex = farleftpt;
farleftpt = checkvertex;
sym(*farleft, checkedge);
apex(checkedge, checkvertex);
}
while (farrightapex[0] > farrightpt[0]) {
lprevself(*farright);
symself(*farright);
farrightpt = farrightapex;
apex(*farright, farrightapex);
}
}
return;
}
/* Consider eliminating edges from the left triangulation. */
if (!leftfinished) {
/* What vertex would be exposed if an edge were deleted? */
lprev(leftcand, nextedge);
symself(nextedge);
apex(nextedge, nextapex);
/* If nextapex is NULL, then no vertex would be exposed; the */
/* triangulation would have been eaten right through. */
if (nextapex != (vertex) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) > 0.0;
while (badedge) {
/* Eliminate the edge with an edge flip. As a result, the */
/* left triangulation will have one more boundary triangle. */
lnextself(nextedge);
sym(nextedge, topcasing);
lnextself(nextedge);
sym(nextedge, sidecasing);
bond(nextedge, topcasing);
bond(leftcand, sidecasing);
lnextself(leftcand);
sym(leftcand, outercasing);
lprevself(nextedge);
bond(nextedge, outercasing);
/* Correct the vertices to reflect the edge flip. */
setorg(leftcand, lowerleft);
setdest(leftcand, NULL);
setapex(leftcand, nextapex);
setorg(nextedge, NULL);
setdest(nextedge, upperleft);
setapex(nextedge, nextapex);
/* Consider the newly exposed vertex. */
upperleft = nextapex;
/* What vertex would be exposed if another edge were deleted? */
otricopy(sidecasing, nextedge);
apex(nextedge, nextapex);
if (nextapex != (vertex) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) > 0.0;
}
else {
/* Avoid eating right through the triangulation. */
badedge = 0;
}
}
}
}
/* Consider eliminating edges from the right triangulation. */
if (!rightfinished) {
/* What vertex would be exposed if an edge were deleted? */
lnext(rightcand, nextedge);
symself(nextedge);
apex(nextedge, nextapex);
/* If nextapex is NULL, then no vertex would be exposed; the */
/* triangulation would have been eaten right through. */
if (nextapex != (vertex) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) > 0.0;
while (badedge) {
/* Eliminate the edge with an edge flip. As a result, the */
/* right triangulation will have one more boundary triangle. */
lprevself(nextedge);
sym(nextedge, topcasing);
lprevself(nextedge);
sym(nextedge, sidecasing);
bond(nextedge, topcasing);
bond(rightcand, sidecasing);
lprevself(rightcand);
sym(rightcand, outercasing);
lnextself(nextedge);
bond(nextedge, outercasing);
/* Correct the vertices to reflect the edge flip. */
setorg(rightcand, NULL);
setdest(rightcand, lowerright);
setapex(rightcand, nextapex);
setorg(nextedge, upperright);
setdest(nextedge, NULL);
setapex(nextedge, nextapex);
/* Consider the newly exposed vertex. */
upperright = nextapex;
/* What vertex would be exposed if another edge were deleted? */
otricopy(sidecasing, nextedge);
apex(nextedge, nextapex);
if (nextapex != (vertex) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) > 0.0;
}
else {
/* Avoid eating right through the triangulation. */
badedge = 0;
}
}
}
}
if (leftfinished
|| (!rightfinished
&& (incircle(m, b, upperleft, lowerleft, lowerright, upperright) > 0.0))) {
/* Knit the triangulations, adding an edge from `lowerleft' */
/* to `upperright'. */
bond(baseedge, rightcand);
lprev(rightcand, baseedge);
setdest(baseedge, lowerleft);
lowerright = upperright;
sym(baseedge, rightcand);
apex(rightcand, upperright);
}
else {
/* Knit the triangulations, adding an edge from `upperleft' */
/* to `lowerright'. */
bond(baseedge, leftcand);
lnext(leftcand, baseedge);
setorg(baseedge, lowerright);
lowerleft = upperleft;
sym(baseedge, leftcand);
apex(leftcand, upperleft);
}
if (b->verbose > 2) {
printf(" Connecting ");
printtriangle(m, b, &baseedge);
}
}
}
/*****************************************************************************/
/* */
/* divconqrecurse() Recursively form a Delaunay triangulation by the */
/* divide-and-conquer method. */
/* */
/* Recursively breaks down the problem into smaller pieces, which are */
/* knitted together by mergehulls(). The base cases (problems of two or */
/* three vertices) are handled specially here. */
/* */
/* On completion, `farleft' and `farright' are bounding triangles such that */
/* the origin of `farleft' is the leftmost vertex (breaking ties by */
/* choosing the highest leftmost vertex), and the destination of */
/* `farright' is the rightmost vertex (breaking ties by choosing the */
/* lowest rightmost vertex). */
/* */
/*****************************************************************************/
void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray, int vertices, int axis,
struct otri *farleft, struct otri *farright) {
struct otri midtri, tri1, tri2, tri3;
struct otri innerleft, innerright;
REAL area;
int divider;
if (b->verbose > 2) {
printf(" Triangulating %d vertices.\n", vertices);
}
if (vertices == 2) {
/* The triangulation of two vertices is an edge. An edge is */
/* represented by two bounding triangles. */
maketriangle(m, b, farleft);
setorg(*farleft, sortarray[0]);
setdest(*farleft, sortarray[1]);
/* The apex is intentionally left NULL. */
maketriangle(m, b, farright);
setorg(*farright, sortarray[1]);
setdest(*farright, sortarray[0]);
/* The apex is intentionally left NULL. */
bond(*farleft, *farright);
lprevself(*farleft);
lnextself(*farright);
bond(*farleft, *farright);
lprevself(*farleft);
lnextself(*farright);
bond(*farleft, *farright);
if (b->verbose > 2) {
printf(" Creating ");
printtriangle(m, b, farleft);
printf(" Creating ");
printtriangle(m, b, farright);
}
/* Ensure that the origin of `farleft' is sortarray[0]. */
lprev(*farright, *farleft);
return;
}
else if (vertices == 3) {
/* The triangulation of three vertices is either a triangle (with */
/* three bounding triangles) or two edges (with four bounding */
/* triangles). In either case, four triangles are created. */
maketriangle(m, b, &midtri);
maketriangle(m, b, &tri1);
maketriangle(m, b, &tri2);
maketriangle(m, b, &tri3);
area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
if (area == 0.0) {
/* Three collinear vertices; the triangulation is two edges. */
setorg(midtri, sortarray[0]);
setdest(midtri, sortarray[1]);
setorg(tri1, sortarray[1]);
setdest(tri1, sortarray[0]);
setorg(tri2, sortarray[2]);
setdest(tri2, sortarray[1]);
setorg(tri3, sortarray[1]);
setdest(tri3, sortarray[2]);
/* All apices are intentionally left NULL. */
bond(midtri, tri1);
bond(tri2, tri3);
lnextself(midtri);
lprevself(tri1);
lnextself(tri2);
lprevself(tri3);
bond(midtri, tri3);
bond(tri1, tri2);
lnextself(midtri);
lprevself(tri1);
lnextself(tri2);
lprevself(tri3);
bond(midtri, tri1);
bond(tri2, tri3);
/* Ensure that the origin of `farleft' is sortarray[0]. */
otricopy(tri1, *farleft);
/* Ensure that the destination of `farright' is sortarray[2]. */
otricopy(tri2, *farright);
}
else {
/* The three vertices are not collinear; the triangulation is one */
/* triangle, namely `midtri'. */
setorg(midtri, sortarray[0]);
setdest(tri1, sortarray[0]);
setorg(tri3, sortarray[0]);
/* Apices of tri1, tri2, and tri3 are left NULL. */
if (area > 0.0) {
/* The vertices are in counterclockwise order. */
setdest(midtri, sortarray[1]);
setorg(tri1, sortarray[1]);
setdest(tri2, sortarray[1]);
setapex(midtri, sortarray[2]);
setorg(tri2, sortarray[2]);
setdest(tri3, sortarray[2]);
}
else {
/* The vertices are in clockwise order. */
setdest(midtri, sortarray[2]);
setorg(tri1, sortarray[2]);
setdest(tri2, sortarray[2]);
setapex(midtri, sortarray[1]);
setorg(tri2, sortarray[1]);
setdest(tri3, sortarray[1]);
}
/* The topology does not depend on how the vertices are ordered. */
bond(midtri, tri1);
lnextself(midtri);
bond(midtri, tri2);
lnextself(midtri);
bond(midtri, tri3);
lprevself(tri1);
lnextself(tri2);
bond(tri1, tri2);
lprevself(tri1);
lprevself(tri3);
bond(tri1, tri3);
lnextself(tri2);
lprevself(tri3);
bond(tri2, tri3);
/* Ensure that the origin of `farleft' is sortarray[0]. */
otricopy(tri1, *farleft);
/* Ensure that the destination of `farright' is sortarray[2]. */
if (area > 0.0) {
otricopy(tri2, *farright);
}
else {
lnext(*farleft, *farright);
}
}
if (b->verbose > 2) {
printf(" Creating ");
printtriangle(m, b, &midtri);
printf(" Creating ");
printtriangle(m, b, &tri1);
printf(" Creating ");
printtriangle(m, b, &tri2);
printf(" Creating ");
printtriangle(m, b, &tri3);
}
return;
}
else {
/* Split the vertices in half. */
divider = vertices >> 1;
/* Recursively triangulate each half. */
divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis, &innerright,
farright);
if (b->verbose > 1) {
printf(" Joining triangulations with %d and %d vertices.\n", divider, vertices - divider);
}
/* Merge the two triangulations into one. */
mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
}
}
long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost) {
struct otri searchedge;
struct otri dissolveedge;
struct otri deadtriangle;
vertex markorg;
long hullsize;
triangle ptr; /* Temporary variable used by sym(). */
if (b->verbose) {
printf(" Removing ghost triangles.\n");
}
/* Find an edge on the convex hull to start point location from. */
lprev(*startghost, searchedge);
symself(searchedge);
m->dummytri[0] = encode(searchedge);
/* Remove the bounding box and count the convex hull edges. */
otricopy(*startghost, dissolveedge);
hullsize = 0;
do {
hullsize++;
lnext(dissolveedge, deadtriangle);
lprevself(dissolveedge);
symself(dissolveedge);
/* If no PSLG is involved, set the boundary markers of all the vertices */
/* on the convex hull. If a PSLG is used, this step is done later. */
if (!b->poly) {
/* Watch out for the case where all the input vertices are collinear. */
if (dissolveedge.tri != m->dummytri) {
org(dissolveedge, markorg);
if (vertexmark(markorg) == 0) {
setvertexmark(markorg, 1);
}
}
}
/* Remove a bounding triangle from a convex hull triangle. */
dissolve(dissolveedge);
/* Find the next bounding triangle. */
sym(deadtriangle, dissolveedge);
/* Delete the bounding triangle. */
triangledealloc(m, deadtriangle.tri);
} while (!otriequal(dissolveedge, *startghost));
return hullsize;
}
/*****************************************************************************/
/* */
/* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */
/* conquer method. */
/* */
/* Sorts the vertices, calls a recursive procedure to triangulate them, and */
/* removes the bounding box, setting boundary markers as appropriate. */
/* */
/*****************************************************************************/
long divconqdelaunay(struct mesh *m, struct behavior *b) {
vertex *sortarray;
struct otri hullleft, hullright;
int divider;
int i, j;
if (b->verbose) {
printf(" Sorting vertices.\n");
}
/* Allocate an array of pointers to vertices for sorting. */
sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
traversalinit(&m->vertices);
for (i = 0; i < m->invertices; i++) {
sortarray[i] = vertextraverse(m);
}
/* Sort the vertices. */
vertexsort(sortarray, m->invertices);
/* Discard duplicate vertices, which can really mess up the algorithm. */
i = 0;
for (j = 1; j < m->invertices; j++) {
if ((sortarray[i][0] == sortarray[j][0]) && (sortarray[i][1] == sortarray[j][1])) {
if (!b->quiet) {
printf(
"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n", sortarray[j][0], sortarray[j][1]);
}
setvertextype(sortarray[j], UNDEADVERTEX);
m->undeads++;
}
else {
i++;
sortarray[i] = sortarray[j];
}
}
i++;
if (b->dwyer) {
/* Re-sort the array of vertices to accommodate alternating cuts. */
divider = i >> 1;
if (i - divider >= 2) {
if (divider >= 2) {
alternateaxes(sortarray, divider, 1);
}
alternateaxes(&sortarray[divider], i - divider, 1);
}
}
if (b->verbose) {
printf(" Forming triangulation.\n");
}
/* Form the Delaunay triangulation. */
divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
trifree((VOID *) sortarray);
return removeghosts(m, b, &hullleft);
}
/** **/
/** **/
/********* Divide-and-conquer Delaunay triangulation ends here *********/
/********* General mesh construction routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* delaunay() Form a Delaunay triangulation. */
/* */
/*****************************************************************************/
long delaunay(struct mesh *m, struct behavior *b) {
long hulledges;
m->eextras = 0;
initializetrisubpools(m, b);
#ifdef REDUCED
if (!b->quiet) {
printf( "Constructing Delaunay triangulation by divide-and-conquer method.\n");
}
hulledges = divconqdelaunay(m, b);
#else /* not REDUCED */
if (!b->quiet)
{
printf("Constructing Delaunay triangulation ");
if (b->incremental)
{
printf("by incremental method.\n");
}
else if (b->sweepline)
{
printf("by sweepline method.\n");
}
else
{
printf("by divide-and-conquer method.\n");
}
}
if (b->incremental)
{
hulledges = incrementaldelaunay(m, b);
}
else if (b->sweepline)
{
hulledges = sweeplinedelaunay(m, b);
}
else
{
hulledges = divconqdelaunay(m, b);
}
#endif /* not REDUCED */
if (m->triangles.items == 0) {
/* The input vertices were all collinear, so there are no triangles. */
return 0l;
}
else {
return hulledges;
}
}
/** **/
/** **/
/********* General mesh construction routines end here *********/
/********* Segment insertion begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* finddirection() Find the first triangle on the path from one point */
/* to another. */
/* */
/* Finds the triangle that intersects a line segment drawn from the */
/* origin of `searchtri' to the point `searchpoint', and returns the result */
/* in `searchtri'. The origin of `searchtri' does not change, even though */
/* the triangle returned may differ from the one passed in. This routine */
/* is used to find the direction to move in to get from one point to */
/* another. */
/* */
/* The return value notes whether the destination or apex of the found */
/* triangle is collinear with the two points in question. */
/* */
/*****************************************************************************/
enum finddirectionresult finddirection(struct mesh *m, struct behavior *b, struct otri *searchtri,
vertex searchpoint) {
struct otri checktri;
vertex startvertex;
vertex leftvertex, rightvertex;
REAL leftccw, rightccw;
int leftflag, rightflag;
triangle ptr; /* Temporary variable used by onext() and oprev(). */
org(*searchtri, startvertex);
dest(*searchtri, rightvertex);
apex(*searchtri, leftvertex);
/* Is `searchpoint' to the left? */
leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
leftflag = leftccw > 0.0;
/* Is `searchpoint' to the right? */
rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
rightflag = rightccw > 0.0;
if (leftflag && rightflag) {
/* `searchtri' faces directly away from `searchpoint'. We could go left */
/* or right. Ask whether it's a triangle or a boundary on the left. */
onext(*searchtri, checktri);
if (checktri.tri == m->dummytri) {
leftflag = 0;
}
else {
rightflag = 0;
}
}
while (leftflag) {
/* Turn left until satisfied. */
onextself(*searchtri);
if (searchtri->tri == m->dummytri) {
printf("Internal error in finddirection(): Unable to find a\n");
printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], startvertex[1]);
printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
internalerror();
}
apex(*searchtri, leftvertex);
rightccw = leftccw;
leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
leftflag = leftccw > 0.0;
}
while (rightflag) {
/* Turn right until satisfied. */
oprevself(*searchtri);
if (searchtri->tri == m->dummytri) {
printf("Internal error in finddirection(): Unable to find a\n");
printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], startvertex[1]);
printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
internalerror();
}
dest(*searchtri, rightvertex);
leftccw = rightccw;
rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
rightflag = rightccw > 0.0;
}
if (leftccw == 0.0) {
return LEFTCOLLINEAR;
}
else if (rightccw == 0.0) {
return RIGHTCOLLINEAR;
}
else {
return WITHIN;
}
}
/*****************************************************************************/
/* */
/* segmentintersection() Find the intersection of an existing segment */
/* and a segment that is being inserted. Insert */
/* a vertex at the intersection, splitting an */
/* existing subsegment. */
/* */
/* The segment being inserted connects the apex of splittri to endpoint2. */
/* splitsubseg is the subsegment being split, and MUST adjoin splittri. */
/* Hence, endpoints of the subsegment being split are the origin and */
/* destination of splittri. */
/* */
/* On completion, splittri is a handle having the newly inserted */
/* intersection point as its origin, and endpoint1 as its destination. */
/* */
/*****************************************************************************/
void segmentintersection(struct mesh *m, struct behavior *b, struct otri *splittri,
struct osub *splitsubseg, vertex endpoint2) {
struct osub opposubseg;
vertex endpoint1;
vertex torg, tdest;
vertex leftvertex, rightvertex;
vertex newvertex;
enum insertvertexresult success;
enum finddirectionresult collinear;
REAL ex, ey;
REAL tx, ty;
REAL etx, ety;
REAL split, denom;
int i;
triangle ptr; /* Temporary variable used by onext(). */
subseg sptr; /* Temporary variable used by snext(). */
/* Find the other three segment endpoints. */
apex(*splittri, endpoint1);
org(*splittri, torg);
dest(*splittri, tdest);
/* Segment intersection formulae; see the Antonio reference. */
tx = tdest[0] - torg[0];
ty = tdest[1] - torg[1];
ex = endpoint2[0] - endpoint1[0];
ey = endpoint2[1] - endpoint1[1];
etx = torg[0] - endpoint2[0];
ety = torg[1] - endpoint2[1];
denom = ty * ex - tx * ey;
if (denom == 0.0) {
printf("Internal error in segmentintersection():");
printf(" Attempt to find intersection of parallel segments.\n");
internalerror();
return;
}
split = (ey * etx - ex * ety) / denom;
/* Create the new vertex. */
newvertex = (vertex) poolalloc(&m->vertices);
/* Interpolate its coordinate and attributes. */
for (i = 0; i < 2 + m->nextras; i++) {
newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
}
setvertexmark(newvertex, mark(*splitsubseg));
setvertextype(newvertex, INPUTVERTEX);
if (b->verbose > 1) {
printf(
" Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n", torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
}
/* Insert the intersection vertex. This should always succeed. */
success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
if (success != SUCCESSFULVERTEX) {
printf("Internal error in segmentintersection():\n");
printf(" Failure to split a segment.\n");
internalerror();
return;
}
/* Record a triangle whose origin is the new vertex. */
setvertex2tri(newvertex, encode(*splittri));
if (m->steinerleft > 0) {
m->steinerleft--;
}
/* Divide the segment into two, and correct the segment endpoints. */
ssymself(*splitsubseg);
spivot(*splitsubseg, opposubseg);
sdissolve(*splitsubseg);
sdissolve(opposubseg);
do {
setsegorg(*splitsubseg, newvertex);
snextself(*splitsubseg);
} while (splitsubseg->ss != m->dummysub);
do {
setsegorg(opposubseg, newvertex);
snextself(opposubseg);
} while (opposubseg.ss != m->dummysub);
/* Inserting the vertex may have caused edge flips. We wish to rediscover */
/* the edge connecting endpoint1 to the new intersection vertex. */
collinear = finddirection(m, b, splittri, endpoint1);
dest(*splittri, rightvertex);
apex(*splittri, leftvertex);
if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
onextself(*splittri);
}
else if ((rightvertex[0] != endpoint1[0]) || (rightvertex[1] != endpoint1[1])) {
printf("Internal error in segmentintersection():\n");
printf(" Topological inconsistency after splitting a segment.\n");
internalerror();
return;
}
/* `splittri' should have destination endpoint1. */
}
/*****************************************************************************/
/* */
/* scoutsegment() Scout the first triangle on the path from one endpoint */
/* to another, and check for completion (reaching the */
/* second endpoint), a collinear vertex, or the */
/* intersection of two segments. */
/* */
/* Returns one if the entire segment is successfully inserted, and zero if */
/* the job must be finished by conformingedge() or constrainededge(). */
/* */
/* If the first triangle on the path has the second endpoint as its */
/* destination or apex, a subsegment is inserted and the job is done. */
/* */
/* If the first triangle on the path has a destination or apex that lies on */
/* the segment, a subsegment is inserted connecting the first endpoint to */
/* the collinear vertex, and the search is continued from the collinear */
/* vertex. */
/* */
/* If the first triangle on the path has a subsegment opposite its origin, */
/* then there is a segment that intersects the segment being inserted. */
/* Their intersection vertex is inserted, splitting the subsegment. */
/* */
/*****************************************************************************/
int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri, vertex endpoint2,
int newmark) {
struct otri crosstri;
struct osub crosssubseg;
vertex leftvertex, rightvertex;
enum finddirectionresult collinear;
subseg sptr; /* Temporary variable used by tspivot(). */
collinear = finddirection(m, b, searchtri, endpoint2);
dest(*searchtri, rightvertex);
apex(*searchtri, leftvertex);
if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1]))
|| ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
/* The segment is already an edge in the mesh. */
if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
lprevself(*searchtri);
}
/* Insert a subsegment, if there isn't already one there. */
insertsubseg(m, b, searchtri, newmark);
return 1;
}
else if (collinear == LEFTCOLLINEAR) {
/* We've collided with a vertex between the segment's endpoints. */
/* Make the collinear vertex be the triangle's origin. */
lprevself(*searchtri);
insertsubseg(m, b, searchtri, newmark);
/* Insert the remainder of the segment. */
return scoutsegment(m, b, searchtri, endpoint2, newmark);
}
else if (collinear == RIGHTCOLLINEAR) {
/* We've collided with a vertex between the segment's endpoints. */
insertsubseg(m, b, searchtri, newmark);
/* Make the collinear vertex be the triangle's origin. */
lnextself(*searchtri);
/* Insert the remainder of the segment. */
return scoutsegment(m, b, searchtri, endpoint2, newmark);
}
else {
lnext(*searchtri, crosstri);
tspivot(crosstri, crosssubseg);
/* Check for a crossing segment. */
if (crosssubseg.ss == m->dummysub) {
return 0;
}
else {
/* Insert a vertex at the intersection. */
segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
if (error_set)
return -1;
otricopy(crosstri, *searchtri);
insertsubseg(m, b, searchtri, newmark);
/* Insert the remainder of the segment. */
return scoutsegment(m, b, searchtri, endpoint2, newmark);
}
}
}
/*****************************************************************************/
/* */
/* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */
/* recursively from an existing vertex. Pay special */
/* attention to stacking inverted triangles. */
/* */
/* This is a support routine for inserting segments into a constrained */
/* Delaunay triangulation. */
/* */
/* The origin of fixuptri is treated as if it has just been inserted, and */
/* the local Delaunay condition needs to be enforced. It is only enforced */
/* in one sector, however, that being the angular range defined by */
/* fixuptri. */
/* */
/* This routine also needs to make decisions regarding the "stacking" of */
/* triangles. (Read the description of constrainededge() below before */
/* reading on here, so you understand the algorithm.) If the position of */
/* the new vertex (the origin of fixuptri) indicates that the vertex before */
/* it on the polygon is a reflex vertex, then "stack" the triangle by */
/* doing nothing. (fixuptri is an inverted triangle, which is how stacked */
/* triangles are identified.) */
/* */
/* Otherwise, check whether the vertex before that was a reflex vertex. */
/* If so, perform an edge flip, thereby eliminating an inverted triangle */
/* (popping it off the stack). The edge flip may result in the creation */
/* of a new inverted triangle, depending on whether or not the new vertex */
/* is visible to the vertex three edges behind on the polygon. */
/* */
/* If neither of the two vertices behind the new vertex are reflex */
/* vertices, fixuptri and fartri, the triangle opposite it, are not */
/* inverted; hence, ensure that the edge between them is locally Delaunay. */
/* */
/* `leftside' indicates whether or not fixuptri is to the left of the */
/* segment being inserted. (Imagine that the segment is pointing up from */
/* endpoint1 to endpoint2.) */
/* */
/*****************************************************************************/
void delaunayfixup(struct mesh *m, struct behavior *b, struct otri *fixuptri, int leftside) {
struct otri neartri;
struct otri fartri;
struct osub faredge;
vertex nearvertex, leftvertex, rightvertex, farvertex;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
lnext(*fixuptri, neartri);
sym(neartri, fartri);
/* Check if the edge opposite the origin of fixuptri can be flipped. */
if (fartri.tri == m->dummytri) {
return;
}
tspivot(neartri, faredge);
if (faredge.ss != m->dummysub) {
return;
}
/* Find all the relevant vertices. */
apex(neartri, nearvertex);
org(neartri, leftvertex);
dest(neartri, rightvertex);
apex(fartri, farvertex);
/* Check whether the previous polygon vertex is a reflex vertex. */
if (leftside) {
if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
/* leftvertex is a reflex vertex too. Nothing can */
/* be done until a convex section is found. */
return;
}
}
else {
if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
/* rightvertex is a reflex vertex too. Nothing can */
/* be done until a convex section is found. */
return;
}
}
if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
/* fartri is not an inverted triangle, and farvertex is not a reflex */
/* vertex. As there are no reflex vertices, fixuptri isn't an */
/* inverted triangle, either. Hence, test the edge between the */
/* triangles to ensure it is locally Delaunay. */
if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <= 0.0) {
return;
}
/* Not locally Delaunay; go on to an edge flip. */
} /* else fartri is inverted; remove it from the stack by flipping. */
flip(m, b, &neartri);
lprevself(*fixuptri);
/* Restore the origin of fixuptri after the flip. */
/* Recursively process the two triangles that result from the flip. */
delaunayfixup(m, b, fixuptri, leftside);
delaunayfixup(m, b, &fartri, leftside);
}
/*****************************************************************************/
/* */
/* constrainededge() Force a segment into a constrained Delaunay */
/* triangulation by deleting the triangles it */
/* intersects, and triangulating the polygons that */
/* form on each side of it. */
/* */
/* Generates a single subsegment connecting `endpoint1' to `endpoint2'. */
/* The triangle `starttri' has `endpoint1' as its origin. `newmark' is the */
/* boundary marker of the segment. */
/* */
/* To insert a segment, every triangle whose interior intersects the */
/* segment is deleted. The union of these deleted triangles is a polygon */
/* (which is not necessarily monotone, but is close enough), which is */
/* divided into two polygons by the new segment. This routine's task is */
/* to generate the Delaunay triangulation of these two polygons. */
/* */
/* You might think of this routine's behavior as a two-step process. The */
/* first step is to walk from endpoint1 to endpoint2, flipping each edge */
/* encountered. This step creates a fan of edges connected to endpoint1, */
/* including the desired edge to endpoint2. The second step enforces the */
/* Delaunay condition on each side of the segment in an incremental manner: */
/* proceeding along the polygon from endpoint1 to endpoint2 (this is done */
/* independently on each side of the segment), each vertex is "enforced" */
/* as if it had just been inserted, but affecting only the previous */
/* vertices. The result is the same as if the vertices had been inserted */
/* in the order they appear on the polygon, so the result is Delaunay. */
/* */
/* In truth, constrainededge() interleaves these two steps. The procedure */
/* walks from endpoint1 to endpoint2, and each time an edge is encountered */
/* and flipped, the newly exposed vertex (at the far end of the flipped */
/* edge) is "enforced" upon the previously flipped edges, usually affecting */
/* only one side of the polygon (depending upon which side of the segment */
/* the vertex falls on). */
/* */
/* The algorithm is complicated by the need to handle polygons that are not */
/* convex. Although the polygon is not necessarily monotone, it can be */
/* triangulated in a manner similar to the stack-based algorithms for */
/* monotone polygons. For each reflex vertex (local concavity) of the */
/* polygon, there will be an inverted triangle formed by one of the edge */
/* flips. (An inverted triangle is one with negative area - that is, its */
/* vertices are arranged in clockwise order - and is best thought of as a */
/* wrinkle in the fabric of the mesh.) Each inverted triangle can be */
/* thought of as a reflex vertex pushed on the stack, waiting to be fixed */
/* later. */
/* */
/* A reflex vertex is popped from the stack when a vertex is inserted that */
/* is visible to the reflex vertex. (However, if the vertex behind the */
/* reflex vertex is not visible to the reflex vertex, a new inverted */
/* triangle will take its place on the stack.) These details are handled */
/* by the delaunayfixup() routine above. */
/* */
/*****************************************************************************/
void constrainededge(struct mesh *m, struct behavior *b, struct otri *starttri, vertex endpoint2,
int newmark) {
struct otri fixuptri, fixuptri2;
struct osub crosssubseg;
vertex endpoint1;
vertex farvertex;
REAL area;
int collision;
int done;
triangle ptr; /* Temporary variable used by sym() and oprev(). */
subseg sptr; /* Temporary variable used by tspivot(). */
org(*starttri, endpoint1);
lnext(*starttri, fixuptri);
flip(m, b, &fixuptri);
/* `collision' indicates whether we have found a vertex directly */
/* between endpoint1 and endpoint2. */
collision = 0;
done = 0;
do {
org(fixuptri, farvertex);
/* `farvertex' is the extreme point of the polygon we are "digging" */
/* to get from endpoint1 to endpoint2. */
if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around endpoint2. */
delaunayfixup(m, b, &fixuptri, 0);
delaunayfixup(m, b, &fixuptri2, 1);
done = 1;
}
else {
/* Check whether farvertex is to the left or right of the segment */
/* being inserted, to decide which edge of fixuptri to dig */
/* through next. */
area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
if (area == 0.0) {
/* We've collided with a vertex between endpoint1 and endpoint2. */
collision = 1;
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around farvertex. */
delaunayfixup(m, b, &fixuptri, 0);
delaunayfixup(m, b, &fixuptri2, 1);
done = 1;
}
else {
if (area > 0.0) { /* farvertex is to the left of the segment. */
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around farvertex, on the */
/* left side of the segment only. */
delaunayfixup(m, b, &fixuptri2, 1);
/* Flip the edge that crosses the segment. After the edge is */
/* flipped, one of its endpoints is the fan vertex, and the */
/* destination of fixuptri is the fan vertex. */
lprevself(fixuptri);
}
else { /* farvertex is to the right of the segment. */
delaunayfixup(m, b, &fixuptri, 0);
/* Flip the edge that crosses the segment. After the edge is */
/* flipped, one of its endpoints is the fan vertex, and the */
/* destination of fixuptri is the fan vertex. */
oprevself(fixuptri);
}
/* Check for two intersecting segments. */
tspivot(fixuptri, crosssubseg);
if (crosssubseg.ss == m->dummysub) {
flip(m, b, &fixuptri); /* May create inverted triangle at left. */
}
else {
/* We've collided with a segment between endpoint1 and endpoint2. */
collision = 1;
/* Insert a vertex at the intersection. */
segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
done = 1;
}
}
}
} while (!done);
/* Insert a subsegment to make the segment permanent. */
insertsubseg(m, b, &fixuptri, newmark);
/* If there was a collision with an interceding vertex, install another */
/* segment connecting that vertex with endpoint2. */
if (collision) {
/* Insert the remainder of the segment. */
if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
constrainededge(m, b, &fixuptri, endpoint2, newmark);
}
}
}
/*****************************************************************************/
/* */
/* insertsegment() Insert a PSLG segment into a triangulation. */
/* */
/*****************************************************************************/
void insertsegment(struct mesh *m, struct behavior *b, vertex endpoint1, vertex endpoint2,
int newmark) {
struct otri searchtri1, searchtri2;
triangle encodedtri;
vertex checkvertex;
triangle ptr; /* Temporary variable used by sym(). */
if (b->verbose > 1) {
printf( " Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
}
/* Find a triangle whose origin is the segment's first endpoint. */
checkvertex = (vertex) NULL;
encodedtri = vertex2tri(endpoint1);
if (encodedtri != (triangle) NULL) {
decode(encodedtri, searchtri1);
org(searchtri1, checkvertex);
}
if (checkvertex != endpoint1) {
/* Find a boundary triangle to search from. */
searchtri1.tri = m->dummytri;
searchtri1.orient = 0;
symself(searchtri1);
/* Search for the segment's first endpoint by point location. */
if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
printf( "Internal error in insertsegment(): Unable to locate PSLG vertex\n");
printf(" (%.12g, %.12g) in triangulation.\n", endpoint1[0], endpoint1[1]);
internalerror();
}
}
/* Remember this triangle to improve subsequent point location. */
otricopy(searchtri1, m->recenttri);
/* Scout the beginnings of a path from the first endpoint */
/* toward the second. */
if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
/* The segment was easily inserted. */
return;
}
/* The first endpoint may have changed if a collision with an intervening */
/* vertex on the segment occurred. */
org(searchtri1, endpoint1);
/* Find a triangle whose origin is the segment's second endpoint. */
checkvertex = (vertex) NULL;
encodedtri = vertex2tri(endpoint2);
if (encodedtri != (triangle) NULL) {
decode(encodedtri, searchtri2);
org(searchtri2, checkvertex);
}
if (checkvertex != endpoint2) {
/* Find a boundary triangle to search from. */
searchtri2.tri = m->dummytri;
searchtri2.orient = 0;
symself(searchtri2);
/* Search for the segment's second endpoint by point location. */
if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
printf( "Internal error in insertsegment(): Unable to locate PSLG vertex\n");
printf(" (%.12g, %.12g) in triangulation.\n", endpoint2[0], endpoint2[1]);
internalerror();
}
}
/* Remember this triangle to improve subsequent point location. */
otricopy(searchtri2, m->recenttri);
/* Scout the beginnings of a path from the second endpoint */
/* toward the first. */
if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
/* The segment was easily inserted. */
return;
}
/* The second endpoint may have changed if a collision with an intervening */
/* vertex on the segment occurred. */
org(searchtri2, endpoint2);
#ifndef REDUCED
#ifndef CDT_ONLY
if (b->splitseg)
{
/* Insert vertices to force the segment into the triangulation. */
conformingedge(m, b, endpoint1, endpoint2, newmark);
}
else
{
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
/* Insert the segment directly into the triangulation. */
constrainededge(m, b, &searchtri1, endpoint2, newmark);
#ifndef REDUCED
#ifndef CDT_ONLY
}
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
}
/*****************************************************************************/
/* */
/* markhull() Cover the convex hull of a triangulation with subsegments. */
/* */
/*****************************************************************************/
void markhull(struct mesh *m, struct behavior *b) {
struct otri hulltri;
struct otri nexttri;
struct otri starttri;
triangle ptr; /* Temporary variable used by sym() and oprev(). */
/* Find a triangle handle on the hull. */
hulltri.tri = m->dummytri;
hulltri.orient = 0;
symself(hulltri);
/* Remember where we started so we know when to stop. */
otricopy(hulltri, starttri);
/* Go once counterclockwise around the convex hull. */
do {
/* Create a subsegment if there isn't already one here. */
insertsubseg(m, b, &hulltri, 1);
/* To find the next hull edge, go clockwise around the next vertex. */
lnextself(hulltri);
oprev(hulltri, nexttri);
while (nexttri.tri != m->dummytri) {
otricopy(nexttri, hulltri);
oprev(hulltri, nexttri);
}
} while (!otriequal(hulltri, starttri));
}
/*****************************************************************************/
/* */
/* formskeleton() Create the segments of a triangulation, including PSLG */
/* segments and edges on the convex hull. */
/* */
/* The PSLG segments are read from a .poly file. The return value is the */
/* number of segments in the file. */
/* */
/*****************************************************************************/
void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist, int *segmentmarkerlist,
int numberofsegments) {
char polyfilename[6];
int index;
vertex endpoint1, endpoint2;
int segmentmarkers;
int end1, end2;
int boundmarker;
int i;
if (b->poly) {
if (!b->quiet) {
printf("Recovering segments in Delaunay triangulation.\n");
}
strcpy(polyfilename, "input");
m->insegments = numberofsegments;
segmentmarkers = segmentmarkerlist != (int *) NULL;
index = 0;
/* If the input vertices are collinear, there is no triangulation, */
/* so don't try to insert segments. */
if (m->triangles.items == 0) {
return;
}
/* If segments are to be inserted, compute a mapping */
/* from vertices to triangles. */
if (m->insegments > 0) {
makevertexmap(m, b);
if (b->verbose) {
printf(" Recovering PSLG segments.\n");
}
}
boundmarker = 0;
/* Read and insert the segments. */
for (i = 0; i < m->insegments; i++) {
end1 = segmentlist[index++];
end2 = segmentlist[index++];
if (segmentmarkers) {
boundmarker = segmentmarkerlist[i];
}
if ((end1 < b->firstnumber) || (end1 >= b->firstnumber + m->invertices)) {
if (!b->quiet) {
printf( "Warning: Invalid first endpoint of segment %d in %s.\n",
b->firstnumber + i, polyfilename);
}
}
else if ((end2 < b->firstnumber) || (end2 >= b->firstnumber + m->invertices)) {
if (!b->quiet) {
printf( "Warning: Invalid second endpoint of segment %d in %s.\n",
b->firstnumber + i, polyfilename);
}
}
else {
/* Find the vertices numbered `end1' and `end2'. */
endpoint1 = getvertex(m, b, end1);
endpoint2 = getvertex(m, b, end2);
if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
if (!b->quiet) {
printf( "Warning: Endpoints of segment %d are coincident in %s.\n",
b->firstnumber + i, polyfilename);
}
}
else {
insertsegment(m, b, endpoint1, endpoint2, boundmarker);
}
}
}
}
else {
m->insegments = 0;
}
if (b->convex || !b->poly) {
/* Enclose the convex hull with subsegments. */
if (b->verbose) {
printf(" Enclosing convex hull with segments.\n");
}
markhull(m, b);
}
}
/** **/
/** **/
/********* Segment insertion ends here *********/
/********* Carving out holes and concavities begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* infecthull() Virally infect all of the triangles of the convex hull */
/* that are not protected by subsegments. Where there are */
/* subsegments, set boundary markers as appropriate. */
/* */
/*****************************************************************************/
void infecthull(struct mesh *m, struct behavior *b) {
struct otri hulltri;
struct otri nexttri;
struct otri starttri;
struct osub hullsubseg;
triangle **deadtriangle;
vertex horg, hdest;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (b->verbose) {
printf(" Marking concavities (external triangles) for elimination.\n");
}
/* Find a triangle handle on the hull. */
hulltri.tri = m->dummytri;
hulltri.orient = 0;
symself(hulltri);
/* Remember where we started so we know when to stop. */
otricopy(hulltri, starttri);
/* Go once counterclockwise around the convex hull. */
do {
/* Ignore triangles that are already infected. */
if (!infected(hulltri)) {
/* Is the triangle protected by a subsegment? */
tspivot(hulltri, hullsubseg);
if (hullsubseg.ss == m->dummysub) {
/* The triangle is not protected; infect it. */
if (!infected(hulltri)) {
infect(hulltri);
deadtriangle = (triangle **) poolalloc(&m->viri);
*deadtriangle = hulltri.tri;
}
}
else {
/* The triangle is protected; set boundary markers if appropriate. */
if (mark(hullsubseg) == 0) {
setmark(hullsubseg, 1);
org(hulltri, horg);
dest(hulltri, hdest);
if (vertexmark(horg) == 0) {
setvertexmark(horg, 1);
}
if (vertexmark(hdest) == 0) {
setvertexmark(hdest, 1);
}
}
}
}
/* To find the next hull edge, go clockwise around the next vertex. */
lnextself(hulltri);
oprev(hulltri, nexttri);
while (nexttri.tri != m->dummytri) {
otricopy(nexttri, hulltri);
oprev(hulltri, nexttri);
}
} while (!otriequal(hulltri, starttri));
}
/*****************************************************************************/
/* */
/* plague() Spread the virus from all infected triangles to any neighbors */
/* not protected by subsegments. Delete all infected triangles. */
/* */
/* This is the procedure that actually creates holes and concavities. */
/* */
/* This procedure operates in two phases. The first phase identifies all */
/* the triangles that will die, and marks them as infected. They are */
/* marked to ensure that each triangle is added to the virus pool only */
/* once, so the procedure will terminate. */
/* */
/* The second phase actually eliminates the infected triangles. It also */
/* eliminates orphaned vertices. */
/* */
/*****************************************************************************/
void plague(struct mesh *m, struct behavior *b) {
struct otri testtri;
struct otri neighbor;
triangle **virusloop;
triangle **deadtriangle;
struct osub neighborsubseg;
vertex testvertex;
vertex norg, ndest;
vertex deadorg, deaddest, deadapex;
int killorg;
triangle ptr; /* Temporary variable used by sym() and onext(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (b->verbose) {
printf(" Marking neighbors of marked triangles.\n");
}
/* Loop through all the infected triangles, spreading the virus to */
/* their neighbors, then to their neighbors' neighbors. */
traversalinit(&m->viri);
virusloop = (triangle **) traverse(&m->viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* A triangle is marked as infected by messing with one of its pointers */
/* to subsegments, setting it to an illegal value. Hence, we have to */
/* temporarily uninfect this triangle so that we can examine its */
/* adjacent subsegments. */
uninfect(testtri);
if (b->verbose > 2) {
/* Assign the triangle an orientation for convenience in */
/* checking its vertices. */
testtri.orient = 0;
org(testtri, deadorg);
dest(testtri, deaddest);
apex(testtri, deadapex);
printf(
" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", deadorg[0], deadorg[1], deaddest[0], deaddest[1], deadapex[0], deadapex[1]);
}
/* Check each of the triangle's three neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
/* Find the neighbor. */
sym(testtri, neighbor);
/* Check for a subsegment between the triangle and its neighbor. */
tspivot(testtri, neighborsubseg);
/* Check if the neighbor is nonexistent or already infected. */
if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
if (neighborsubseg.ss != m->dummysub) {
/* There is a subsegment separating the triangle from its */
/* neighbor, but both triangles are dying, so the subsegment */
/* dies too. */
subsegdealloc(m, neighborsubseg.ss);
if (neighbor.tri != m->dummytri) {
/* Make sure the subsegment doesn't get deallocated again */
/* later when the infected neighbor is visited. */
uninfect(neighbor);
tsdissolve(neighbor);
infect(neighbor);
}
}
}
else { /* The neighbor exists and is not infected. */
if (neighborsubseg.ss == m->dummysub) {
/* There is no subsegment protecting the neighbor, so */
/* the neighbor becomes infected. */
if (b->verbose > 2) {
org(neighbor, deadorg);
dest(neighbor, deaddest);
apex(neighbor, deadapex);
printf(
" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", deadorg[0], deadorg[1], deaddest[0], deaddest[1], deadapex[0], deadapex[1]);
}
infect(neighbor);
/* Ensure that the neighbor's neighbors will be infected. */
deadtriangle = (triangle **) poolalloc(&m->viri);
*deadtriangle = neighbor.tri;
}
else { /* The neighbor is protected by a subsegment. */
/* Remove this triangle from the subsegment. */
stdissolve(neighborsubseg);
/* The subsegment becomes a boundary. Set markers accordingly. */
if (mark(neighborsubseg) == 0) {
setmark(neighborsubseg, 1);
}
org(neighbor, norg);
dest(neighbor, ndest);
if (vertexmark(norg) == 0) {
setvertexmark(norg, 1);
}
if (vertexmark(ndest) == 0) {
setvertexmark(ndest, 1);
}
}
}
}
/* Remark the triangle as infected, so it doesn't get added to the */
/* virus pool again. */
infect(testtri);
virusloop = (triangle **) traverse(&m->viri);
}
if (b->verbose) {
printf(" Deleting marked triangles.\n");
}
traversalinit(&m->viri);
virusloop = (triangle **) traverse(&m->viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* Check each of the three corners of the triangle for elimination. */
/* This is done by walking around each vertex, checking if it is */
/* still connected to at least one live triangle. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
org(testtri, testvertex);
/* Check if the vertex has already been tested. */
if (testvertex != (vertex) NULL) {
killorg = 1;
/* Mark the corner of the triangle as having been tested. */
setorg(testtri, NULL);
/* Walk counterclockwise about the vertex. */
onext(testtri, neighbor);
/* Stop upon reaching a boundary or the starting triangle. */
while ((neighbor.tri != m->dummytri) && (!otriequal(neighbor, testtri))) {
if (infected(neighbor)) {
/* Mark the corner of this triangle as having been tested. */
setorg(neighbor, NULL);
}
else {
/* A live triangle. The vertex survives. */
killorg = 0;
}
/* Walk counterclockwise about the vertex. */
onextself(neighbor);
}
/* If we reached a boundary, we must walk clockwise as well. */
if (neighbor.tri == m->dummytri) {
/* Walk clockwise about the vertex. */
oprev(testtri, neighbor);
/* Stop upon reaching a boundary. */
while (neighbor.tri != m->dummytri) {
if (infected(neighbor)) {
/* Mark the corner of this triangle as having been tested. */
setorg(neighbor, NULL);
}
else {
/* A live triangle. The vertex survives. */
killorg = 0;
}
/* Walk clockwise about the vertex. */
oprevself(neighbor);
}
}
if (killorg) {
if (b->verbose > 1) {
printf(" Deleting vertex (%.12g, %.12g)\n", testvertex[0], testvertex[1]);
}
setvertextype(testvertex, UNDEADVERTEX);
m->undeads++;
}
}
}
/* Record changes in the number of boundary edges, and disconnect */
/* dead triangles from their neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
sym(testtri, neighbor);
if (neighbor.tri == m->dummytri) {
/* There is no neighboring triangle on this edge, so this edge */
/* is a boundary edge. This triangle is being deleted, so this */
/* boundary edge is deleted. */
m->hullsize--;
}
else {
/* Disconnect the triangle from its neighbor. */
dissolve(neighbor);
/* There is a neighboring triangle on this edge, so this edge */
/* becomes a boundary edge when this triangle is deleted. */
m->hullsize++;
}
}
/* Return the dead triangle to the pool of triangles. */
triangledealloc(m, testtri.tri);
virusloop = (triangle **) traverse(&m->viri);
}
/* Empty the virus pool. */
poolrestart(&m->viri);
}
/*****************************************************************************/
/* */
/* regionplague() Spread regional attributes and/or area constraints */
/* (from a .poly file) throughout the mesh. */
/* */
/* This procedure operates in two phases. The first phase spreads an */
/* attribute and/or an area constraint through a (segment-bounded) region. */
/* The triangles are marked to ensure that each triangle is added to the */
/* virus pool only once, so the procedure will terminate. */
/* */
/* The second phase uninfects all infected triangles, returning them to */
/* normal. */
/* */
/*****************************************************************************/
void regionplague(struct mesh *m, struct behavior *b, REAL attribute, REAL area) {
struct otri testtri;
struct otri neighbor;
triangle **virusloop;
triangle **regiontri;
struct osub neighborsubseg;
vertex regionorg, regiondest, regionapex;
triangle ptr; /* Temporary variable used by sym() and onext(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (b->verbose > 1) {
printf(" Marking neighbors of marked triangles.\n");
}
/* Loop through all the infected triangles, spreading the attribute */
/* and/or area constraint to their neighbors, then to their neighbors' */
/* neighbors. */
traversalinit(&m->viri);
virusloop = (triangle **) traverse(&m->viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* A triangle is marked as infected by messing with one of its pointers */
/* to subsegments, setting it to an illegal value. Hence, we have to */
/* temporarily uninfect this triangle so that we can examine its */
/* adjacent subsegments. */
uninfect(testtri);
if (b->regionattrib) {
/* Set an attribute. */
setelemattribute(testtri, m->eextras, attribute);
}
if (b->vararea) {
/* Set an area constraint. */
setareabound(testtri, area);
}
if (b->verbose > 2) {
/* Assign the triangle an orientation for convenience in */
/* checking its vertices. */
testtri.orient = 0;
org(testtri, regionorg);
dest(testtri, regiondest);
apex(testtri, regionapex);
printf( " Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
regionapex[0], regionapex[1]);
}
/* Check each of the triangle's three neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
/* Find the neighbor. */
sym(testtri, neighbor);
/* Check for a subsegment between the triangle and its neighbor. */
tspivot(testtri, neighborsubseg);
/* Make sure the neighbor exists, is not already infected, and */
/* isn't protected by a subsegment. */
if ((neighbor.tri != m->dummytri) && !infected(neighbor)
&& (neighborsubseg.ss == m->dummysub)) {
if (b->verbose > 2) {
org(neighbor, regionorg);
dest(neighbor, regiondest);
apex(neighbor, regionapex);
printf( " Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
regionapex[0], regionapex[1]);
}
/* Infect the neighbor. */
infect(neighbor);
/* Ensure that the neighbor's neighbors will be infected. */
regiontri = (triangle **) poolalloc(&m->viri);
*regiontri = neighbor.tri;
}
}
/* Remark the triangle as infected, so it doesn't get added to the */
/* virus pool again. */
infect(testtri);
virusloop = (triangle **) traverse(&m->viri);
}
/* Uninfect all triangles. */
if (b->verbose > 1) {
printf(" Unmarking marked triangles.\n");
}
traversalinit(&m->viri);
virusloop = (triangle **) traverse(&m->viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
uninfect(testtri);
virusloop = (triangle **) traverse(&m->viri);
}
/* Empty the virus pool. */
poolrestart(&m->viri);
}
/*****************************************************************************/
/* */
/* carveholes() Find the holes and infect them. Find the area */
/* constraints and infect them. Infect the convex hull. */
/* Spread the infection and kill triangles. Spread the */
/* area constraints. */
/* */
/* This routine mainly calls other routines to carry out all these */
/* functions. */
/* */
/*****************************************************************************/
void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes, REAL *regionlist,
int regions) {
struct otri searchtri;
struct otri triangleloop;
struct otri *regiontris;
triangle **holetri;
triangle **regiontri;
vertex searchorg, searchdest;
enum locateresult intersect;
int i;
triangle ptr; /* Temporary variable used by sym(). */
if (!(b->quiet || (b->noholes && b->convex))) {
printf("Removing unwanted triangles.\n");
if (b->verbose && (holes > 0)) {
printf(" Marking holes for elimination.\n");
}
}
if (regions > 0) {
/* Allocate storage for the triangles in which region points fall. */
regiontris = (struct otri *) trimalloc(regions * (int) sizeof(struct otri));
}
else {
regiontris = (struct otri *) NULL;
}
if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
/* Initialize a pool of viri to be used for holes, concavities, */
/* regional attributes, and/or regional area constraints. */
poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
}
if (!b->convex) {
/* Mark as infected any unprotected triangles on the boundary. */
/* This is one way by which concavities are created. */
infecthull(m, b);
}
if ((holes > 0) && !b->noholes) {
/* Infect each triangle in which a hole lies. */
for (i = 0; i < 2 * holes; i += 2) {
/* Ignore holes that aren't within the bounds of the mesh. */
if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax) && (holelist[i + 1] >= m->ymin)
&& (holelist[i + 1] <= m->ymax)) {
/* Start searching from some triangle on the outer boundary. */
searchtri.tri = m->dummytri;
searchtri.orient = 0;
symself(searchtri);
/* Ensure that the hole is to the left of this boundary edge; */
/* otherwise, locate() will falsely report that the hole */
/* falls within the starting triangle. */
org(searchtri, searchorg);
dest(searchtri, searchdest);
if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) > 0.0) {
/* Find a triangle that contains the hole. */
intersect = locate(m, b, &holelist[i], &searchtri);
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
/* Infect the triangle. This is done by marking the triangle */
/* as infected and including the triangle in the virus pool. */
infect(searchtri);
holetri = (triangle **) poolalloc(&m->viri);
*holetri = searchtri.tri;
}
}
}
}
}
/* Now, we have to find all the regions BEFORE we carve the holes, because */
/* locate() won't work when the triangulation is no longer convex. */
/* (Incidentally, this is the reason why regional attributes and area */
/* constraints can't be used when refining a preexisting mesh, which */
/* might not be convex; they can only be used with a freshly */
/* triangulated PSLG.) */
if (regions > 0) {
/* Find the starting triangle for each region. */
for (i = 0; i < regions; i++) {
regiontris[i].tri = m->dummytri;
/* Ignore region points that aren't within the bounds of the mesh. */
if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax)
&& (regionlist[4 * i + 1] >= m->ymin) && (regionlist[4 * i + 1] <= m->ymax)) {
/* Start searching from some triangle on the outer boundary. */
searchtri.tri = m->dummytri;
searchtri.orient = 0;
symself(searchtri);
/* Ensure that the region point is to the left of this boundary */
/* edge; otherwise, locate() will falsely report that the */
/* region point falls within the starting triangle. */
org(searchtri, searchorg);
dest(searchtri, searchdest);
if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) > 0.0) {
/* Find a triangle that contains the region point. */
intersect = locate(m, b, &regionlist[4 * i], &searchtri);
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
/* Record the triangle for processing after the */
/* holes have been carved. */
otricopy(searchtri, regiontris[i]);
}
}
}
}
}
if (m->viri.items > 0) {
/* Carve the holes and concavities. */
plague(m, b);
}
/* The virus pool should be empty now. */
if (regions > 0) {
if (!b->quiet) {
if (b->regionattrib) {
if (b->vararea) {
printf("Spreading regional attributes and area constraints.\n");
}
else {
printf("Spreading regional attributes.\n");
}
}
else {
printf("Spreading regional area constraints.\n");
}
}
if (b->regionattrib && !b->refine) {
/* Assign every triangle a regional attribute of zero. */
traversalinit(&m->triangles);
triangleloop.orient = 0;
triangleloop.tri = triangletraverse(m);
while (triangleloop.tri != (triangle *) NULL) {
setelemattribute(triangleloop, m->eextras, 0.0);
triangleloop.tri = triangletraverse(m);
}
}
for (i = 0; i < regions; i++) {
if (regiontris[i].tri != m->dummytri) {
/* Make sure the triangle under consideration still exists. */
/* It may have been eaten by the virus. */
if (!deadtri(regiontris[i].tri)) {
/* Put one triangle in the virus pool. */
infect(regiontris[i]);
regiontri = (triangle **) poolalloc(&m->viri);
*regiontri = regiontris[i].tri;
/* Apply one region's attribute and/or area constraint. */
regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
/* The virus pool should be empty now. */
}
}
}
if (b->regionattrib && !b->refine) {
/* Note the fact that each triangle has an additional attribute. */
m->eextras++;
}
}
/* Free up memory. */
if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
pooldeinit(&m->viri);
}
if (regions > 0) {
trifree((VOID *) regiontris);
}
}
/** **/
/** **/
/********* Carving out holes and concavities ends here *********/
/*****************************************************************************/
/* */
/* highorder() Create extra nodes for quadratic subparametric elements. */
/* */
/*****************************************************************************/
void highorder(struct mesh *m, struct behavior *b) {
struct otri triangleloop, trisym;
struct osub checkmark;
vertex newvertex;
vertex torg, tdest;
int i;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (!b->quiet) {
printf("Adding vertices for second-order triangles.\n");
}
/* The following line ensures that dead items in the pool of nodes */
/* cannot be allocated for the extra nodes associated with high */
/* order elements. This ensures that the primary nodes (at the */
/* corners of elements) will occur earlier in the output files, and */
/* have lower indices, than the extra nodes. */
m->vertices.deaditemstack = (VOID *) NULL;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
org(triangleloop, torg);
dest(triangleloop, tdest);
/* Create a new node in the middle of the edge. Interpolate */
/* its attributes. */
newvertex = (vertex) poolalloc(&m->vertices);
for (i = 0; i < 2 + m->nextras; i++) {
newvertex[i] = 0.5 * (torg[i] + tdest[i]);
}
/* Set the new node's marker to zero or one, depending on */
/* whether it lies on a boundary. */
setvertexmark(newvertex, trisym.tri == m->dummytri);
setvertextype(newvertex, trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
if (b->usesegments) {
tspivot(triangleloop, checkmark);
/* If this edge is a segment, transfer the marker to the new node. */
if (checkmark.ss != m->dummysub) {
setvertexmark(newvertex, mark(checkmark));
setvertextype(newvertex, SEGMENTVERTEX);
}
}
if (b->verbose > 1) {
printf(" Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
}
/* Record the new node in the (one or two) adjacent elements. */
triangleloop.tri[m->highorderindex + triangleloop.orient] = (triangle) newvertex;
if (trisym.tri != m->dummytri) {
trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
}
}
}
triangleloop.tri = triangletraverse(m);
}
}
/*****************************************************************************/
/* */
/* transfernodes() Read the vertices from memory. */
/* */
/*****************************************************************************/
void transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist, REAL *pointattriblist,
int *pointmarkerlist, int numberofpoints, int numberofpointattribs) {
vertex vertexloop;
REAL x, y;
int i, j;
int coordindex;
int attribindex;
m->invertices = numberofpoints;
m->mesh_dim = 2;
m->nextras = numberofpointattribs;
m->readnodefile = 0;
if (m->invertices < 3) {
printf("Error: Input must have at least three input vertices.\n");
triexit(1);
}
if (m->nextras == 0) {
b->weighted = 0;
}
initializevertexpool(m, b);
/* Read the vertices. */
coordindex = 0;
attribindex = 0;
for (i = 0; i < m->invertices; i++) {
vertexloop = (vertex) poolalloc(&m->vertices);
/* Read the vertex coordinates. */
x = vertexloop[0] = pointlist[coordindex++];
y = vertexloop[1] = pointlist[coordindex++];
/* Read the vertex attributes. */
for (j = 0; j < numberofpointattribs; j++) {
vertexloop[2 + j] = pointattriblist[attribindex++];
}
if (pointmarkerlist != (int *) NULL) {
/* Read a vertex marker. */
setvertexmark(vertexloop, pointmarkerlist[i]);
}
else {
/* If no markers are specified, they default to zero. */
setvertexmark(vertexloop, 0);
}
// ----------------------------------------------
for (j = (i - 1) * 2; j >= 0; j -= 2){
if (x == pointlist[j] && y == pointlist[j+1]){
printf("skip duplicate %d\n", j >> 1);
setvertextype(vertexloop, UNDEADVERTEX);
vertexloop[0] = 0xffffffff;
vertexloop[1] = 0xffffffff;
break;
}
}
if (j >= 0)
continue;
// ----------------------------------------------
setvertextype(vertexloop, INPUTVERTEX);
/* Determine the smallest and largest x and y coordinates. */
if (i == 0) {
m->xmin = m->xmax = x;
m->ymin = m->ymax = y;
}
else {
m->xmin = (x < m->xmin) ? x : m->xmin;
m->xmax = (x > m->xmax) ? x : m->xmax;
m->ymin = (y < m->ymin) ? y : m->ymin;
m->ymax = (y > m->ymax) ? y : m->ymax;
}
}
/* Nonexistent x value used as a flag to mark circle events in sweepline */
/* Delaunay algorithm. */
m->xminextreme = 10 * m->xmin - 9 * m->xmax;
}
/*****************************************************************************/
/* */
/* writenodes() Number the vertices and write them to a .node file. */
/* */
/* To save memory, the vertex numbers are written over the boundary markers */
/* after the vertices are written to a file. */
/* */
/*****************************************************************************/
void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist, REAL **pointattriblist,
int **pointmarkerlist) {
REAL *plist;
REAL *palist;
int *pmlist;
int coordindex;
int attribindex;
vertex vertexloop;
long outvertices;
int vertexnumber;
int i;
if (b->jettison) {
outvertices = m->vertices.items - m->undeads;
}
else {
outvertices = m->vertices.items;
}
if (!b->quiet) {
printf("Writing vertices.\n");
}
/* Allocate memory for output vertices if necessary. */
if (*pointlist == (REAL *) NULL) {
*pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));
}
/* Allocate memory for output vertex attributes if necessary. */
if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
*pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras * sizeof(REAL)));
}
/* Allocate memory for output vertex markers if necessary. */
if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
*pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
}
plist = *pointlist;
palist = *pointattriblist;
pmlist = *pointmarkerlist;
coordindex = 0;
attribindex = 0;
traversalinit(&m->vertices);
vertexnumber = b->firstnumber;
vertexloop = vertextraverse(m);
while (vertexloop != (vertex) NULL) {
if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
/* X and y coordinates. */
plist[coordindex++] = vertexloop[0];
plist[coordindex++] = vertexloop[1];
/* Vertex attributes. */
for (i = 0; i < m->nextras; i++) {
palist[attribindex++] = vertexloop[2 + i];
}
if (!b->nobound) {
/* Copy the boundary marker. */
pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
}
setvertexmark(vertexloop, vertexnumber);
vertexnumber++;
}
vertexloop = vertextraverse(m);
}
}
/*****************************************************************************/
/* */
/* numbernodes() Number the vertices. */
/* */
/* Each vertex is assigned a marker equal to its number. */
/* */
/* Used when writenodes() is not called because no .node file is written. */
/* */
/*****************************************************************************/
void numbernodes(struct mesh *m, struct behavior *b) {
vertex vertexloop;
int vertexnumber;
traversalinit(&m->vertices);
vertexnumber = b->firstnumber;
vertexloop = vertextraverse(m);
while (vertexloop != (vertex) NULL) {
setvertexmark(vertexloop, vertexnumber);
if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
vertexnumber++;
}
vertexloop = vertextraverse(m);
}
}
/*****************************************************************************/
/* */
/* writeelements() Write the triangles to an .ele file. */
/* */
/*****************************************************************************/
void writeelements(struct mesh *m, struct behavior *b, INDICE **trianglelist,
REAL **triangleattriblist) {
INDICE *tlist;
REAL *talist;
int vertexindex;
int attribindex;
struct otri triangleloop;
vertex p1, p2, p3;
vertex mid1, mid2, mid3;
long elementnumber;
int i;
if (!b->quiet) {
printf("Writing triangles.\n");
}
/* Allocate memory for output triangles if necessary. */
if (*trianglelist == (INDICE *) NULL) {
*trianglelist = (INDICE *) trimalloc(
(INDICE) (m->triangles.items * ((b->order + 1) * (b->order + 2) / 2) * sizeof(int)));
}
/* Allocate memory for output triangle attributes if necessary. */
if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
*triangleattriblist = (REAL *) trimalloc(
(int) (m->triangles.items * m->eextras * sizeof(REAL)));
}
tlist = *trianglelist;
talist = *triangleattriblist;
vertexindex = 0;
attribindex = 0;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
triangleloop.orient = 0;
elementnumber = b->firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, p1);
dest(triangleloop, p2);
apex(triangleloop, p3);
if (b->order == 1) {
tlist[vertexindex++] = vertexmark(p1);
tlist[vertexindex++] = vertexmark(p2);
tlist[vertexindex++] = vertexmark(p3);
}
else {
mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
mid3 = (vertex) triangleloop.tri[m->highorderindex];
tlist[vertexindex++] = vertexmark(p1);
tlist[vertexindex++] = vertexmark(p2);
tlist[vertexindex++] = vertexmark(p3);
tlist[vertexindex++] = vertexmark(mid1);
tlist[vertexindex++] = vertexmark(mid2);
tlist[vertexindex++] = vertexmark(mid3);
}
for (i = 0; i < m->eextras; i++) {
talist[attribindex++] = elemattribute(triangleloop, i);
}
triangleloop.tri = triangletraverse(m);
elementnumber++;
}
}
/*****************************************************************************/
/* */
/* writepoly() Write the segments and holes to a .poly file. */
/* */
/*****************************************************************************/
void writepoly(struct mesh *m, struct behavior *b, int **segmentlist, int **segmentmarkerlist) {
int *slist;
int *smlist;
int index;
struct osub subsegloop;
vertex endpoint1, endpoint2;
long subsegnumber;
if (!b->quiet) {
printf("Writing segments.\n");
}
/* Allocate memory for output segments if necessary. */
if (*segmentlist == (int *) NULL) {
*segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 * sizeof(int)));
}
/* Allocate memory for output segment markers if necessary. */
if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
*segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items * sizeof(int)));
}
slist = *segmentlist;
smlist = *segmentmarkerlist;
index = 0;
traversalinit(&m->subsegs);
subsegloop.ss = subsegtraverse(m);
subsegloop.ssorient = 0;
subsegnumber = b->firstnumber;
while (subsegloop.ss != (subseg *) NULL) {
sorg(subsegloop, endpoint1);
sdest(subsegloop, endpoint2);
/* Copy indices of the segment's two endpoints. */
slist[index++] = vertexmark(endpoint1);
slist[index++] = vertexmark(endpoint2);
if (!b->nobound) {
/* Copy the boundary marker. */
smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
}
subsegloop.ss = subsegtraverse(m);
subsegnumber++;
}
}
/*****************************************************************************/
/* */
/* writeedges() Write the edges to an .edge file. */
/* */
/*****************************************************************************/
void writeedges(struct mesh *m, struct behavior *b, int **edgelist, int **edgemarkerlist) {
int *elist;
int *emlist;
int index;
struct otri triangleloop, trisym;
struct osub checkmark;
vertex p1, p2;
long edgenumber;
triangle ptr; /* Temporary variable used by sym(). */
subseg sptr; /* Temporary variable used by tspivot(). */
if (!b->quiet) {
printf("Writing edges.\n");
}
/* Allocate memory for edges if necessary. */
if (*edgelist == (int *) NULL) {
*edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
}
/* Allocate memory for edge markers if necessary. */
if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
*edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
}
elist = *edgelist;
emlist = *edgemarkerlist;
index = 0;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
edgenumber = b->firstnumber;
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
org(triangleloop, p1);
dest(triangleloop, p2);
elist[index++] = vertexmark(p1);
elist[index++] = vertexmark(p2);
if (b->nobound) {
}
else {
/* Edge number, indices of two endpoints, and a boundary marker. */
/* If there's no subsegment, the boundary marker is zero. */
if (b->usesegments) {
tspivot(triangleloop, checkmark);
if (checkmark.ss == m->dummysub) {
emlist[edgenumber - b->firstnumber] = 0;
}
else {
emlist[edgenumber - b->firstnumber] = mark(checkmark);
}
}
else {
emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
}
}
edgenumber++;
}
}
triangleloop.tri = triangletraverse(m);
}
}
/*****************************************************************************/
/* */
/* writevoronoi() Write the Voronoi diagram to a .v.node and .v.edge */
/* file. */
/* */
/* The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
/* Hence, the Voronoi vertices are listed by traversing the Delaunay */
/* triangles, and the Voronoi edges are listed by traversing the Delaunay */
/* edges. */
/* */
/* WARNING: In order to assign numbers to the Voronoi vertices, this */
/* procedure messes up the subsegments or the extra nodes of every */
/* element. Hence, you should call this procedure last. */
/* */
/*****************************************************************************/
void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist, REAL **vpointattriblist,
int **vpointmarkerlist, int **vedgelist, int **vedgemarkerlist, REAL **vnormlist) {
REAL *plist;
REAL *palist;
int *elist;
REAL *normlist;
int coordindex;
int attribindex;
struct otri triangleloop, trisym;
vertex torg, tdest, tapex;
REAL circumcenter[2];
REAL xi, eta;
long vnodenumber, vedgenumber;
int p1, p2;
int i;
triangle ptr; /* Temporary variable used by sym(). */
if (!b->quiet) {
printf("Writing Voronoi vertices.\n");
}
/* Allocate memory for Voronoi vertices if necessary. */
if (*vpointlist == (REAL *) NULL) {
*vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 * sizeof(REAL)));
}
/* Allocate memory for Voronoi vertex attributes if necessary. */
if (*vpointattriblist == (REAL *) NULL) {
*vpointattriblist = (REAL *) trimalloc(
(int) (m->triangles.items * m->nextras * sizeof(REAL)));
}
*vpointmarkerlist = (int *) NULL;
plist = *vpointlist;
palist = *vpointattriblist;
coordindex = 0;
attribindex = 0;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
triangleloop.orient = 0;
vnodenumber = b->firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, torg);
dest(triangleloop, tdest);
apex(triangleloop, tapex);
findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
/* X and y coordinates. */
plist[coordindex++] = circumcenter[0];
plist[coordindex++] = circumcenter[1];
for (i = 2; i < 2 + m->nextras; i++) {
/* Interpolate the vertex attributes at the circumcenter. */
palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i]) + eta * (tapex[i] - torg[i]);
}
*(int *) (triangleloop.tri + 6) = (int) vnodenumber;
triangleloop.tri = triangletraverse(m);
vnodenumber++;
}
if (!b->quiet) {
printf("Writing Voronoi edges.\n");
}
/* Allocate memory for output Voronoi edges if necessary. */
if (*vedgelist == (int *) NULL) {
*vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
}
*vedgemarkerlist = (int *) NULL;
/* Allocate memory for output Voronoi norms if necessary. */
if (*vnormlist == (REAL *) NULL) {
*vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));
}
elist = *vedgelist;
normlist = *vnormlist;
coordindex = 0;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
vedgenumber = b->firstnumber;
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
/* Find the number of this triangle (and Voronoi vertex). */
p1 = *(int *) (triangleloop.tri + 6);
if (trisym.tri == m->dummytri) {
org(triangleloop, torg);
dest(triangleloop, tdest);
/* Copy an infinite ray. Index of one endpoint, and -1. */
elist[coordindex] = p1;
normlist[coordindex++] = tdest[1] - torg[1];
elist[coordindex] = -1;
normlist[coordindex++] = torg[0] - tdest[0];
}
else {
/* Find the number of the adjacent triangle (and Voronoi vertex). */
p2 = *(int *) (trisym.tri + 6);
/* Finite edge. Write indices of two endpoints. */
elist[coordindex] = p1;
normlist[coordindex++] = 0.0;
elist[coordindex] = p2;
normlist[coordindex++] = 0.0;
}
vedgenumber++;
}
}
triangleloop.tri = triangletraverse(m);
}
}
void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist) {
int *nlist;
int index;
struct otri triangleloop, trisym;
long elementnumber;
int neighbor1, neighbor2, neighbor3;
triangle ptr; /* Temporary variable used by sym(). */
if (!b->quiet) {
printf("Writing neighbors.\n");
}
/* Allocate memory for neighbors if necessary. */
if (*neighborlist == (int *) NULL) {
*neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 * sizeof(int)));
}
nlist = *neighborlist;
index = 0;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
triangleloop.orient = 0;
elementnumber = b->firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
*(int *) (triangleloop.tri + 6) = (int) elementnumber;
triangleloop.tri = triangletraverse(m);
elementnumber++;
}
*(int *) (m->dummytri + 6) = -1;
traversalinit(&m->triangles);
triangleloop.tri = triangletraverse(m);
elementnumber = b->firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
triangleloop.orient = 1;
sym(triangleloop, trisym);
neighbor1 = *(int *) (trisym.tri + 6);
triangleloop.orient = 2;
sym(triangleloop, trisym);
neighbor2 = *(int *) (trisym.tri + 6);
triangleloop.orient = 0;
sym(triangleloop, trisym);
neighbor3 = *(int *) (trisym.tri + 6);
nlist[index++] = neighbor1;
nlist[index++] = neighbor2;
nlist[index++] = neighbor3;
triangleloop.tri = triangletraverse(m);
elementnumber++;
}
}
/** **/
/** **/
/********* File I/O routines end here *********/
/*****************************************************************************/
/* */
/* main() or triangulate() Gosh, do everything. */
/* */
/* The sequence is roughly as follows. Many of these steps can be skipped, */
/* depending on the command line switches. */
/* */
/* - Initialize constants and parse the command line. */
/* - Read the vertices from a file and either */
/* - triangulate them (no -r), or */
/* - read an old mesh from files and reconstruct it (-r). */
/* - Insert the PSLG segments (-p), and possibly segments on the convex */
/* hull (-c). */
/* - Read the holes (-p), regional attributes (-pA), and regional area */
/* constraints (-pa). Carve the holes and concavities, and spread the */
/* regional attributes and area constraints. */
/* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */
/* Also enforce the conforming Delaunay property (-q and -a). */
/* - Compute the number of edges in the resulting mesh. */
/* - Promote the mesh's linear triangles to higher order elements (-o). */
/* - Write the output files and print the statistics. */
/* - Check the consistency and Delaunay property of the mesh (-C). */
/* */
/*****************************************************************************/
void triangulate(struct behavior *command, struct triangulateio *in, struct triangulateio *out,
struct triangulateio *vorout) {
struct mesh m;
struct behavior *b = command;
REAL *holearray; /* Array of holes. */
REAL *regionarray; /* Array of regional attributes and area constraints. */
triangleinit(&m);
//parsecommandline(1, &triswitches, &b);
m.steinerleft = b->steiner;
transfernodes(&m, b, in->pointlist, in->pointattributelist, in->pointmarkerlist,
in->numberofpoints, in->numberofpointattributes);
#ifdef CDT_ONLY
m.hullsize = delaunay(&m, b); /* Triangulate the vertices. */
#else /* not CDT_ONLY */
if (b->refine)
{
/* Read and reconstruct a mesh. */
m.hullsize = reconstruct(&m, b, in->trianglelist,
in->triangleattributelist, in->trianglearealist,
in->numberoftriangles, in->numberofcorners,
in->numberoftriangleattributes,
in->segmentlist, in->segmentmarkerlist,
in->numberofsegments);
}
else
{
m.hullsize = delaunay(&m, b); /* Triangulate the vertices. */
}
#endif /* not CDT_ONLY */
/* Ensure that no vertex can be mistaken for a triangular bounding */
/* box vertex in insertvertex(). */
m.infvertex1 = (vertex) NULL;
m.infvertex2 = (vertex) NULL;
m.infvertex3 = (vertex) NULL;
if (b->usesegments) {
m.checksegments = 1; /* Segments will be introduced next. */
if (!b->refine) {
/* Insert PSLG segments and/or convex hull segments. */
formskeleton(&m, b, in->segmentlist, in->segmentmarkerlist, in->numberofsegments);
}
}
if (b->poly && (m.triangles.items > 0)) {
holearray = in->holelist;
m.holes = in->numberofholes;
regionarray = in->regionlist;
m.regions = in->numberofregions;
if (!b->refine) {
/* Carve out holes and concavities. */
carveholes(&m, b, holearray, m.holes, regionarray, m.regions);
}
}
else {
/* Without a PSLG, there can be no holes or regional attributes */
/* or area constraints. The following are set to zero to avoid */
/* an accidental free() later. */
m.holes = 0;
m.regions = 0;
}
#ifndef CDT_ONLY
if (b->quality && (m.triangles.items > 0))
{
enforcequality(&m, b); /* Enforce angle and area constraints. */
}
#endif /* not CDT_ONLY */
#ifndef CDT_ONLY
if (b->quality)
{
printf("Quality milliseconds: %ld\n",
1000l * (tv5.tv_sec - tv4.tv_sec) +
(tv5.tv_usec - tv4.tv_usec) / 1000l);
}
#endif /* not CDT_ONLY */
/* Calculate the number of edges. */
m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
if (b->order > 1) {
highorder(&m, b); /* Promote elements to higher polynomial order. */
}
if (!b->quiet) {
printf("\n");
}
if (b->jettison) {
out->numberofpoints = m.vertices.items - m.undeads;
}
else {
out->numberofpoints = m.vertices.items;
}
out->numberofpointattributes = m.nextras;
out->numberoftriangles = m.triangles.items;
out->numberofcorners = (b->order + 1) * (b->order + 2) / 2;
out->numberoftriangleattributes = m.eextras;
out->numberofedges = m.edges;
if (b->usesegments) {
out->numberofsegments = m.subsegs.items;
}
else {
out->numberofsegments = m.hullsize;
}
if (vorout != (struct triangulateio *) NULL) {
vorout->numberofpoints = m.triangles.items;
vorout->numberofpointattributes = m.nextras;
vorout->numberofedges = m.edges;
}
/* If not using iteration numbers, don't write a .node file if one was */
/* read, because the original one would be overwritten! */
if (b->nonodewritten || (b->noiterationnum && m.readnodefile)) {
if (!b->quiet) {
printf("NOT writing vertices.\n");
}
numbernodes(&m, b); /* We must remember to number the vertices. */
}
else {
/* writenodes() numbers the vertices too. */
writenodes(&m, b, &out->pointlist, &out->pointattributelist, &out->pointmarkerlist);
}
if (b->noelewritten) {
if (!b->quiet) {
printf("NOT writing triangles.\n");
}
}
else {
writeelements(&m, b, &out->trianglelist, &out->triangleattributelist);
}
/* The -c switch (convex switch) causes a PSLG to be written */
/* even if none was read. */
if (b->poly || b->convex) {
/* If not using iteration numbers, don't overwrite the .poly file. */
if (b->nopolywritten || b->noiterationnum) {
if (!b->quiet) {
printf("NOT writing segments.\n");
}
}
else {
writepoly(&m, b, &out->segmentlist, &out->segmentmarkerlist);
out->numberofholes = m.holes;
out->numberofregions = m.regions;
if (b->poly) {
out->holelist = in->holelist;
out->regionlist = in->regionlist;
}
else {
out->holelist = (REAL *) NULL;
out->regionlist = (REAL *) NULL;
}
}
}
if (b->edgesout) {
writeedges(&m, b, &out->edgelist, &out->edgemarkerlist);
}
if (b->voronoi) {
writevoronoi(&m, b, &vorout->pointlist, &vorout->pointattributelist, &vorout->pointmarkerlist,
&vorout->edgelist, &vorout->edgemarkerlist, &vorout->normlist);
}
if (b->neighbors) {
writeneighbors(&m, b, &out->neighborlist);
}
if (!b->quiet) {
statistics(&m, b);
}
#ifndef REDUCED
if (b->docheck)
{
checkmesh(&m, b);
checkdelaunay(&m, b);
}
#endif /* not REDUCED */
triangledeinit(&m, b);
}