365 lines
11 KiB
Java
365 lines
11 KiB
Java
/*
|
|
* Copyright 2012, 2013 Hannes Janetzek
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU Lesser General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
package org.oscim.utils;
|
|
|
|
import org.oscim.core.PointD;
|
|
|
|
import android.graphics.Point;
|
|
|
|
/**
|
|
* @author Hannes Janetzek
|
|
*/
|
|
public final class GeometryUtils {
|
|
/**
|
|
* Calculates the center of the minimum bounding rectangle for the given
|
|
* coordinates.
|
|
*
|
|
* @param coordinates
|
|
* the coordinates for which calculation should be done.
|
|
* @return the center coordinates of the minimum bounding rectangle.
|
|
*/
|
|
static float[] calculateCenterOfBoundingBox(float[] coordinates) {
|
|
float longitudeMin = coordinates[0];
|
|
float longitudeMax = coordinates[0];
|
|
float latitudeMax = coordinates[1];
|
|
float latitudeMin = coordinates[1];
|
|
|
|
for (int i = 2; i < coordinates.length; i += 2) {
|
|
if (coordinates[i] < longitudeMin) {
|
|
longitudeMin = coordinates[i];
|
|
} else if (coordinates[i] > longitudeMax) {
|
|
longitudeMax = coordinates[i];
|
|
}
|
|
|
|
if (coordinates[i + 1] < latitudeMin) {
|
|
latitudeMin = coordinates[i + 1];
|
|
} else if (coordinates[i + 1] > latitudeMax) {
|
|
latitudeMax = coordinates[i + 1];
|
|
}
|
|
}
|
|
|
|
return new float[] { (longitudeMin + longitudeMax) / 2, (latitudeMax + latitudeMin) / 2 };
|
|
}
|
|
|
|
/**
|
|
* @param way
|
|
* the coordinates of the way.
|
|
* @return true if the given way is closed, false otherwise.
|
|
*/
|
|
static boolean isClosedWay(float[] way) {
|
|
return Float.compare(way[0], way[way.length - 2]) == 0
|
|
&& Float.compare(way[1], way[way.length - 1]) == 0;
|
|
}
|
|
|
|
private GeometryUtils() {
|
|
throw new IllegalStateException();
|
|
}
|
|
|
|
public static byte linesIntersect(
|
|
double x1, double y1, double x2, double y2,
|
|
double x3, double y3, double x4, double y4) {
|
|
// Return false if either of the lines have zero length
|
|
if (x1 == x2 && y1 == y2 || x3 == x4 && y3 == y4) {
|
|
return 0;
|
|
}
|
|
// Fastest method, based on Franklin Antonio's
|
|
// "Faster Line Segment Intersection" topic "in Graphics Gems III" book
|
|
// (http://www.graphicsgems.org/)
|
|
double ax = x2 - x1;
|
|
double ay = y2 - y1;
|
|
double bx = x3 - x4;
|
|
double by = y3 - y4;
|
|
double cx = x1 - x3;
|
|
double cy = y1 - y3;
|
|
|
|
double alphaNumerator = by * cx - bx * cy;
|
|
double commonDenominator = ay * bx - ax * by;
|
|
|
|
if (commonDenominator > 0) {
|
|
if (alphaNumerator < 0 || alphaNumerator > commonDenominator) {
|
|
return 0;
|
|
}
|
|
} else if (commonDenominator < 0) {
|
|
if (alphaNumerator > 0 || alphaNumerator < commonDenominator) {
|
|
return 0;
|
|
}
|
|
}
|
|
double betaNumerator = ax * cy - ay * cx;
|
|
if (commonDenominator > 0) {
|
|
if (betaNumerator < 0 || betaNumerator > commonDenominator) {
|
|
return 0;
|
|
}
|
|
} else if (commonDenominator < 0) {
|
|
if (betaNumerator > 0 || betaNumerator < commonDenominator) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (commonDenominator == 0) {
|
|
// This code wasn't in Franklin Antonio's method. It was added by Keith
|
|
// Woodward.
|
|
// The lines are parallel.
|
|
// Check if they're collinear.
|
|
double y3LessY1 = y3 - y1;
|
|
double collinearityTestForP3 = x1 * (y2 - y3) + x2 * (y3LessY1) + x3 * (y1 - y2); // see
|
|
// http://mathworld.wolfram.com/Collinear.html
|
|
// If p3 is collinear with p1 and p2 then p4 will also be collinear,
|
|
// since p1-p2 is parallel with p3-p4
|
|
if (collinearityTestForP3 == 0) {
|
|
// The lines are collinear. Now check if they overlap.
|
|
if (x1 >= x3 && x1 <= x4 || x1 <= x3 && x1 >= x4 || x2 >= x3 && x2 <= x4
|
|
|| x2 <= x3 && x2 >= x4
|
|
|| x3 >= x1 && x3 <= x2 || x3 <= x1 && x3 >= x2) {
|
|
if (y1 >= y3 && y1 <= y4 || y1 <= y3 && y1 >= y4 || y2 >= y3 && y2 <= y4
|
|
|| y2 <= y3 && y2 >= y4
|
|
|| y3 >= y1 && y3 <= y2 || y3 <= y1 && y3 >= y2) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static boolean doesIntersect(double l1x1, double l1y1, double l1x2, double l1y2, double l2x1,
|
|
double l2y1,
|
|
double l2x2, double l2y2) {
|
|
double denom = ((l2y2 - l2y1) * (l1x2 - l1x1)) - ((l2x2 - l2x1) * (l1y2 - l1y1));
|
|
|
|
if (denom == 0.0f) {
|
|
return false;
|
|
}
|
|
|
|
double ua = (((l2x2 - l2x1) * (l1y1 - l2y1)) - ((l2y2 - l2y1) * (l1x1 - l2x1))) / denom;
|
|
double ub = (((l1x2 - l1x1) * (l1y1 - l2y1)) - ((l1y2 - l1y1) * (l1x1 - l2x1))) / denom;
|
|
|
|
return ((ua >= 0.0d) && (ua <= 1.0d) && (ub >= 0.0d) && (ub <= 1.0d));
|
|
}
|
|
|
|
public static boolean lineIntersect(
|
|
int x1, int y1, int x2, int y2,
|
|
int x3, int y3, int x4, int y4) {
|
|
|
|
float denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
|
|
if (denom == 0.0) { // Lines are parallel.
|
|
return false;
|
|
}
|
|
float ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denom;
|
|
float ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denom;
|
|
if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
|
|
public static double pointToLineDistance(Point A, Point B, Point P) {
|
|
double normalLength = Math.hypot(B.x - A.x, B.y - A.y);
|
|
return Math.abs((P.x - A.x) * (B.y - A.y) - (P.y - A.y) * (B.x - A.x)) / normalLength;
|
|
}
|
|
|
|
// from libosmscout-render
|
|
public static byte calcLinesIntersect(
|
|
double ax1, double ay1,
|
|
double ax2, double ay2,
|
|
double bx1, double by1,
|
|
double bx2, double by2,
|
|
PointD point)
|
|
{
|
|
double ua_numr = (bx2 - bx1) * (ay1 - by1) - (by2 - by1) * (ax1 - bx1);
|
|
double ub_numr = (ax2 - ax1) * (ay1 - by1) - (ay2 - ay1) * (ax1 - bx1);
|
|
double denr = (by2 - by1) * (ax2 - ax1) - (bx2 - bx1) * (ay2 - ay1);
|
|
|
|
if (denr == 0.0)
|
|
{
|
|
// lines are coincident
|
|
if (ua_numr == 0.0 && ub_numr == 0.0)
|
|
return 2; //XSEC_COINCIDENT;
|
|
|
|
// lines are parallel
|
|
return 3; //XSEC_PARALLEL;
|
|
}
|
|
|
|
double ua = ua_numr / denr;
|
|
double ub = ub_numr / denr;
|
|
|
|
//if (ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0)
|
|
{
|
|
point.x = ax1 + ua * (ax2 - ax1);
|
|
point.y = ay1 + ua * (ay2 - ay1);
|
|
return 0; //XSEC_TRUE;
|
|
}
|
|
|
|
//return 1; //XSEC_FALSE;
|
|
}
|
|
|
|
public static float dist(float x1, float y1, float x2, float y2) {
|
|
return (float) Math.sqrt((x1 - x2) * (x1 - x2) + (y2 - y1) * (y2 - y1));
|
|
}
|
|
|
|
public static float pointLineDistance(float x1, float y1, float x2, float y2, float x3, float y3) {
|
|
// taken from kartograph/simplify/douglas_peucker.py:
|
|
// the perpendicular distance from a point (x3,y3) to the line from (x1,y1) to (x2,y2)
|
|
// taken from http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/
|
|
float d = dist(x1, y1, x2, y2);
|
|
float u = (x3 - x1) * (x2 - x1) + (y3 - y1) * (y2 - y1) / (d * d);
|
|
float x = x1 + u * (x2 - x1);
|
|
float y = y1 + u * (y2 - y1);
|
|
return dist(x, y, x3, y3);
|
|
}
|
|
|
|
/*
|
|
* from World Wind Android:
|
|
* Copyright (C) 2012 United States Government as represented by the
|
|
* Administrator of the National Aeronautics and Space Administration.
|
|
* All Rights Reserved.
|
|
* .
|
|
* given the current and previous locations of two points, compute the angle
|
|
* of the rotation they trace out
|
|
*/
|
|
public static double computeRotationAngle(float x, float y, float x2, float y2,
|
|
float xPrev, float yPrev, float xPrev2, float yPrev2)
|
|
{
|
|
// can't compute if no previous points
|
|
if (xPrev < 0 || yPrev < 0 || xPrev2 < 0 || yPrev2 < 0)
|
|
return 0;
|
|
|
|
if ((x - x2) == 0 || (xPrev - xPrev2) == 0)
|
|
return 0;
|
|
|
|
// 1. compute lines connecting pt1 to pt2, and pt1' to pt2'
|
|
float slope = (y - y2) / (x - x2);
|
|
float slopePrev = (yPrev - yPrev2) / (xPrev - xPrev2);
|
|
|
|
// b = y - mx
|
|
float b = y - slope * x;
|
|
float bPrev = yPrev - slopePrev * xPrev;
|
|
|
|
// 2. use Cramer's Rule to find the intersection of the two lines
|
|
float det1 = -slope * 1 + slopePrev * 1;
|
|
float det2 = b * 1 - bPrev * 1;
|
|
float det3 = (-slope * bPrev) - (-slopePrev * b);
|
|
|
|
// check for case where lines are parallel
|
|
if (det1 == 0)
|
|
return 0;
|
|
|
|
// compute the intersection point
|
|
float isectX = det2 / det1;
|
|
float isectY = det3 / det1;
|
|
|
|
// 3. use the law of Cosines to determine the angle covered
|
|
|
|
// compute lengths of sides of triangle created by pt1, pt1Prev and the intersection pt
|
|
double BC = Math.sqrt(Math.pow(x - isectX, 2) + Math.pow(y - isectY, 2));
|
|
double AC = Math.sqrt(Math.pow(xPrev - isectX, 2) + Math.pow(yPrev - isectY, 2));
|
|
double AB = Math.sqrt(Math.pow(x - xPrev, 2) + Math.pow(y - yPrev, 2));
|
|
|
|
double dpx, dpy, dcx, dcy;
|
|
|
|
//this.point1.set(xPrev - isectX, yPrev - isectY);
|
|
//this.point2.set(x - isectX, y - isectY);
|
|
|
|
// if one finger stayed fixed, may have degenerate triangle, so use other triangle instead
|
|
if (BC == 0 || AC == 0 || AB == 0)
|
|
{
|
|
BC = Math.sqrt(Math.pow(x2 - isectX, 2) + Math.pow(y2 - isectY, 2));
|
|
AC = Math.sqrt(Math.pow(xPrev2 - isectX, 2) + Math.pow(yPrev2 - isectY, 2));
|
|
AB = Math.sqrt(Math.pow(x2 - xPrev2, 2) + Math.pow(y2 - yPrev2, 2));
|
|
|
|
//this.point1.set(xPrev2 - isectX, yPrev2 - isectY);
|
|
//this.point2.set(x2 - isectX, y2 - isectY);
|
|
|
|
if (BC == 0 || AC == 0 || AB == 0)
|
|
return 0;
|
|
|
|
dpx = xPrev2 - isectX;
|
|
dpy = yPrev2 - isectY;
|
|
|
|
dcx = x2 - isectX;
|
|
dcy = y2 - isectY;
|
|
} else {
|
|
dpx = xPrev - isectX;
|
|
dpy = yPrev - isectY;
|
|
|
|
dcx = x - isectX;
|
|
dcy = y - isectY;
|
|
}
|
|
|
|
// Law of Cosines
|
|
double num = (Math.pow(BC, 2) + Math.pow(AC, 2) - Math.pow(AB, 2));
|
|
double denom = (2 * BC * AC);
|
|
double BCA = Math.acos(num / denom);
|
|
|
|
// use cross product to determine if rotation is positive or negative
|
|
//if (this.point1.cross3(this.point2).z < 0)
|
|
if (dpx * dcy - dpy * dcx < 0)
|
|
BCA = 2 * Math.PI - BCA;
|
|
|
|
return Math.toDegrees(BCA);
|
|
}
|
|
|
|
// from www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
|
|
public static boolean pointInPoly(int nvert, float[] vert, float testx, float testy) {
|
|
int i, j;
|
|
boolean inside = false;
|
|
for (i = 0, j = (nvert - 1) * 2; i < nvert * 2; j = i++) {
|
|
if (((vert[i * 2 + 1] > testy) != (vert[j * j + 1] > testy)) &&
|
|
(testx < (vert[j * 2] - vert[i * 2])
|
|
* (testy - vert[i * 2 + 1])
|
|
/ (vert[j * 2 + 1] - vert[i * 2 + 1]) + vert[i * 2]))
|
|
inside = !inside;
|
|
}
|
|
return inside;
|
|
}
|
|
|
|
public static float areaSigned(Point p1, Point p2, Point p3) {
|
|
return ((p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y))*0.5f;
|
|
}
|
|
|
|
public static float areaSigned(float ax, float ay, float bx, float by, float cx, float cy) {
|
|
return ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f;
|
|
}
|
|
|
|
public static float area(float ax, float ay, float bx, float by, float cx, float cy) {
|
|
float area = ((ax - cx) * (by - cy) - (bx - cx) * (ay - cy)) * 0.5f;
|
|
return area < 0 ? -area : area;
|
|
}
|
|
|
|
public static boolean pointInTri(Point pt, Point p1, Point p2, Point p3) {
|
|
boolean inside = false;
|
|
boolean p1s = p1.y > pt.y;
|
|
boolean p2s = p2.y > pt.y;
|
|
boolean p3s = p3.y > pt.y;
|
|
|
|
if ((p1s != p3s)
|
|
&& (pt.x < (p3.x - p1.x) * (pt.y - p1.y) / (p3.y - p1.y) + p1.x))
|
|
inside = !inside;
|
|
|
|
if ((p2s != p1s)
|
|
&& (pt.x < (p1.x - p2.x) * (pt.y - p2.y) / (p1.y - p2.y) + p2.x))
|
|
inside = !inside;
|
|
|
|
if ((p3s != p2s)
|
|
&& (pt.x < (p2.x - p3.x) * (pt.y - p3.y) / (p2.y - p3.y) + p3.x))
|
|
inside = !inside;
|
|
|
|
return inside;
|
|
}
|
|
|
|
// TODO compare with http://alienryderflex.com/polygon/
|
|
}
|